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Abstract

It is too often that tracking algorithms lose track of interest points in image sequences.
This persistent problem is difficult because the pixels around an interest point change in
appearance or move in unpredictable ways. In this paper we explore how classifying
videos into categories of camera motion improves the tracking of interest points, by se-
lecting the right specialist motion model for each video. As a proof of concept, we
enumerate a small set of simple categories of camera motion and implement their cor-
responding specialized motion models. We evaluate the strategy of predicting the most
appropriate motion model for each test sequence. Within the framework of a standard
Bayesian tracking formulation, we compare this strategy to two standard motion mod-
els. Our tests on challenging real-world sequences show a significant improvement in
tracking robustness, achieved with different kinds of supervision at training time.

frame 0 frame 10 frame 20
Figure 1: Example sequence with overlaid box showing the output of our specialized “for-
ward” motion model, where the velocity and scale of objects approaching the camera tend to
increase. Neither Brownian nor constant-velocity motion models are as successful at track-
ing interest points here.

(© 2012. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.  http://dx.doi.org/10.5244/C.26.55


http://dx.doi.org/10.5244/C.26.55

2 GARCIA, STURZEL, JURIE, BROSTOW: MOTION MODELS THAT ONLY WORK...

scene: 5
———————————————————— type, geometry... | {Br, CVel,
) ! TRight, TLeft,
. ---- camera motion y Fwd, Bwd}
/
. . . . 7] - _objects in the scene: | —
. / type, shape, color, motion...|
ORS
% '\Q video descriptor
PRI | _
R A N pixels -~ pixels

Figure 2: (Left) [llustration of the complex combination of causes that produce motion in a
video. (Middle) Approximating the real graphical model, the many causes, which may even
have semantic meanings, can be grouped into one more abstract variable. (Right) In practice,
we quantize the causes into a discrete variable, and infer it using a discriminative model.

1 Introduction

The 2D motion of objects in a video is strongly conditioned by the camera motion, as well
as the type of scene and its geometry. Each object may have its own motion pattern in the
context of the more global scene-dependent motion (see Figure 1). We are interested in
motion models that help with overall tracking of interest points. Brownian and constant-
velocity motion models are often ineffective, despite having a reputation as general-purpose
models. We propose that conditioning the choice of motion model on the “causes” of motion
(see Figure 2) can improve tracking performance because the best available specialist motion
model can be employed for each video. Such conditioning frees the specialist from having
to cope with motions beyond its capabilities. In our prototype, the specialist motion models
are programmed in advance by hand, but they could be created by other means in principle.

Given a set of specialist motion models, we must then automatically determine which
model to apply when tracking interest points in a given sequence. This choice among models
amounts to video categorization. We categorize by means of supervised classification.

Our main contributions are (i) the design of a few specialized motion models, which
only track well in scenes having similar geometry and camera motion, (ii) showing that a
new video can be mapped to one of the available motion models automatically, (iii) a new
dataset to evaluate 2D-point tracking, and critically (iv) experimental evidence of improved
tracking performance when using the predicted motion model in unseen videos.

2 Related work

Online trackers represent the current situation by updating a state vector. Trackers can be
seen as having two main components [1]: a model describing the evolution of the state with
time, i.e. the dynamic model, and a model relating the noisy observations to the state, i.e. the
measurement model. We focus on choosing the dynamic model that is most appropriate for
each video clip, though other related tracking research is summarized here as well.

Measurement models. The measurement model is often related to visual appearance cues,
such as contours [10] or color [24]. Online adaptation of the measurement model is an
ongoing area of study, e.g. [11, 35], the main issue being the trade-off between adaptability
versus drift. A time-weighted appearance model can be obtained through weighted online
learning [36] that avoids drift and emphasizes most recent observations. When the tracked
object is at least partially known, an appearance model can be learned a priori, or revised
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online, such as Holzer et al.’s [9] online learning of linear predictors or Grabner ef al.’s online
boosting tracker [8]. Tracking-by-detection uses temporal constraints to resolve the space of
hypotheses that emerge when flexible appearance models are used. Kalal et al. [12] have an
impressive example of a real-time system for solitary patches, while Prisacariu and Reid [25]
demonstrate excellent tracking of even articulated shapes using level sets and nonlinear shape
manifolds as shape priors for known object classes. Williams et al. [34] train a regressor
which can localize the tracked target even with significant occlusions.

An appearance descriptor can be enhanced by integrating simple motion information.
For example, Kristan ef al. [16] use a measurement model combining color and optical flow
to resolve color-only ambiguities. They use a mixed dynamic model combining constant ve-
locity for position and Brownian evolution for size. Cehovin ez al. [31] built on that approach
with a constellation of local visual parts, which get resampled spatially based on consistency
with an object’s higher-level appearance. Most relevant to our supervised learning-based ap-
proach, Stenger et al. [30] assess the suitability of different measurement models for a par-
ticular tracking scenario, e.g. face or hand tracking. Their experiments focused on coupling
different models of appearance, so they replace the dynamic model by simple exhaustive
search, and re-initialize lost tracks as needed. [37] innovates in this vein. In contrast, we use
a fixed appearance model to better study the impact of choosing different motion models.
Dynamic models. Comparatively little attention has been paid to motion models. Dynamic
models can guide the search, tracking through brief occlusions and favoring observations
with more likely motion. While it is very common to simply use Brownian or constant-
velocity motion models, with parameters set a priori, their generality hurts them in many
specific situations. Lourenco and Barreto [19] show the importance of an appropriate motion
model in the case of scenes with radial distortion. If tracking an object with a known nature,
a physical model can better dictate the system’s predictions [5]. If ground-truth tracks are
available, Blake ef al. [2] showed that it is possible to learn the parameters of a motion model
for a given scenario. For simple cases, the initial tracks can come from an untrained tracker.
Rodriguez et al. [26] use topic models to learn long-term flow patterns from a sequence of
a crowded scene, which improves re-tracking in the same scene. In subsequent work [27]
they also cope with previously unseen sequences. For a given area, they retrieve training
patches that appear similar. They use the learned flow patterns as a prior in the framework of
a Kalman filter [13] with a constant-velocity motion model and a flow-based measurement
model. Buchanan and Fitzgibbon [3] obtain a robust motion prior from the global motion of
2D points in a time window, and apply it to re-track them. That motion model is based on
rank constraints on the matrices explaining all the initial 2D tracks, without being restricted
to rigid motions. While their model focused on translations of the individual points, more
complex transformations are possible.

Outgrowing the closed-form learning that was possible in [2], North et al. [23] present
an expanded algorithm to learn the parameters of more complex dynamics. Illustrated on the
example of juggling, they model motion as a sequence of motion “classes”, and concurrently
learn the parameters of each motion class and the transition probabilities among classes.
The large variety of both motion models and available appearance models makes it difficult
to choose among them when designing a system. Kwon and Lee [17] adaptively sample
from a tracker space integrating appearance and motion models, selecting the tracker that
provides the highest data likelihood. We approach a similar challenge, but choosing among
very specialized motion models, and leveraging supervised learning.

Kowdle and Chen [15] also train classifiers based on both scene and camera dynamics,
and use them together with shot-boundary detection to segment videos into clips of consistent
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motion. From the model-selection point of view, our work is related to Mac Aodha et al.’s
[20, 21]. They train a supervised classifier to predict the per-pixel success of different flow
algorithms.

3 Dynamic models and choosing among them

We focus on four types of camera motion (traveling right, traveling left, moving forward,
moving backward) and implement a specialized dynamic model for each. They are described
below, together with two standard dynamic models used very frequently for tracking, namely
Brownian motion and constant velocity. We establish six video categories that correspond to
the six dynamic models, and aim to categorize each new video sequence to its most appro-
priate dynamic model.

3.1 Dynamic models

To compare the performance of the dynamic models on any given video, we choose the task
of tracking 2D points. Our standard Bayesian formulation is implemented it as a particle
filter [1] with a fixed measurement model. Given the position of a 2D point in an initial
frame, we want to know the position of that point in the subsequent frames. For each frame
t, we estimate the posterior distribution of the state of the system x, given the observed
images I ; up to time ¢,

pixlli) = pix) [ plxiot) pvolli)dxr, ()
—— —— —_———  ———  —
posterior measurement model  dynamic model prior

where the posterior at time (f — 1) becomes the prior at time . We now present the mod-
els in terms of equations describing the evolution of the system given the previous state.
Implementation details can be found in Section 4.1 and our online materials.

Brownian (Br): This is the baseline dynamic model. The system’s state vector is X =
[x, y, w, h], where [x,y] is the 2D position and [w, k] are the patch width and height. Position
and scale change only due to Gaussian noise. We keep the aspect ratio fixed, so

[-xt+17 yH—l} NNorm([xh yl‘]7dlag(6x270-}2))a (2)
Witt, Best] = s[ws, by]; s ~Norm(1,07). 3)

Constant Velocity (CVel): This model is also a standard choice for tracking. We set x =
[x, ¥, w, h, X, y, 5], where [, ] are the displacements relative to the previous time-step, and
s is the last increase in scale. Scale is assumed to be Brownian and 6, = oy, so

[xt+17 yH—l] ~ Norm([xh yt]adlag(cxzao-f)) ; (4’)
X1y Yewt] = [ yi] + Pt it ©)
Wit he1] = seewe, els siq1 ~ Norm(st,osz). (6)

Traveling Right / Left (TRight / TLeft): These models are specialized to scenes in which
the camera moves horizontally to the right (or left). The model can be written with the same
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equations as the constant-velocity model, only 0y << oy. The prior on the x displacement
in TRight has the opposite sign to TLeft.

Forward / Backward (Fwd / Bwd): When the camera moves horizontally forward in a
scene, some objects seem to appear at a 2D focus of expansion point [f*, /7], and move away
from it and grow as they get closer to the camera. The opposite happens when the camera
moves backward. Based on validation data, we designed a dynamic model specialized for
such scenes. The model assumes that the distance between a tracked point and its focus of
expansion increases (or decreases) multiplied by a nearly-constant factor d, coupled to s, the
rate of the patch size increase. Fwd and Bwd models have opposite priors on these rates
(d,s >=1for Fwd and d,s <=1 for Bwd). The state vector is x = [x, y, w, h, d, s, f*, f*].

We model each 2D point as having its own focus of expansion (which is sampled from
the previous time-step) and is moving from it in a nearly-straight line, passing through the
current position. We account for slight deviations through & ~ Norm(0, 62), which repre-
sents a tilt angle whose corresponding rotation matrix is Ry. The state updates are

[fi1s ] ~ Nomm([£7, £71, 6%1)7 (7N

diyy =d, + o4€1; € ~Norm(0,1.0), (8)

Si41 =8+ 05&; & ~ Norm(gp,0.1), 9)

et yi1]” = dis 1R [x’_ 'H + [f’ﬁ“] , (10)
Vi = frg Jis1

Witt1, heg1] = Sev1[we, Byl (11)

Note that Brownian motion is a particular case of these two models. Also, the Fwd
and Bwd models can both perform similarly if the observed changes in scale are subtle,
but when the changes become more obvious, the wrong combination of focus position and
motion direction will loose track of the object.

3.2 Dataset

While datasets of manually tracked objects exist (e.g. [32]), we needed self-consistent video
clips spanning a variety of camera motions, and ground-truth 2D tracks for points rather
than objects. Our dataset consists of over 100 challenging real-world videos from YouTube,
encompassing various scenarios, illuminations, and recording conditions. They typically last
3-90 seconds. Through our annotation tool, users picked at least 10 interest points per video,
among all FAST [28, 29] interest points. They marked each point’s [x,y] position in at least
10 subsequent frames, sparsely in time if possible.

We manually obtain inspection-based labels for each video as one way to train a su-
pervised classifier. We ourselves inspected the videos and judged whether a clip belonged
predominantly to one of the four camera motions or might be better served by the Br or CVel
models. For the TRight and TLeft categories, we also include the flipped video in the dataset.
In total there are 12 videos labeled as Br, 11 as CVel, 11 (+ 17 flips) as TRight, 17 (+ 11) as
TLeft, 24 as Fwd, and 14 as Bwd. The flipped videos provide some symmetry with regard
to the difficulty of tracking-left and tracking-right videos. Such videos look similar but their
different target labels make classification harder.

An alternative way of obtaining supervision is performance-based labeling. In this case,
for a given set of available motion models and parameter settings, a video is labeled with the
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one that performed best according to the annotations of ground-truth tracks.
Note that the specialized motion models have been designed previous to obtaining this
benchmark data. The default parameters in our models were not tuned for this data.

3.3 Video description and classification

We use the local video features presented by Wang et al. [33] for the task of action recogni-
tion. They sample points densely and obtain 15-frame-long tracks by concatenating median-
filtered optical flow. From the local (x, y, t)-tube around each track, they extract four de-
scriptors: the trajectory itself (Traj), a histogram of oriented gradients (HOG), a histogram
of oriented flow (HOF), and histograms of flow gradients called motion-boundary histograms
(MBH). We quantize these local features using Extremely Randomized Trees [7] as in [22]
and obtain visual-word vocabularies. For each type of descriptor, we train five trees of around
1000 leaves each. For the experiments, rather than computing the vocabulary on our dataset,
we trained on completely different data, namely the action recognition YouTube dataset [18].
We obtain global video signatures by computing the normalized histogram of visual words,
one per type of descriptor.

For video classification, we use an existing multiclass SVM [4]. It consists of an all-pairs
biclass SVM and majority voting. We pre-compute y>-kernels for each type of signature,
and combine different types of signatures through the sum of the kernels. We have assumed
a constant motion model for the whole of each video, but one could easily imagine a sliding-
window extension to deal with longer, more varied videos.

4 Experiments and results

This section experimentally validates our approach, showing that we can classify a video
clip to select among motion models. The objective is to significantly improve tracking per-
formance.

4.1 Tracking implementation

We implement (1) as a particle filter. Our motion models have higher-dimensional state
vectors than the baselines and therefore might enjoy a larger number of particles, but we fix
all models to 50 particles so that the comparisons are fair in terms of allocated resources.

The state vector X, contains at least the 2D position of the point [x;,y;] and the dimensions
[wy, hy] of a patch around it. We evaluate trackers on the basis of only the position estimates
that they produce, but width and height are also needed by the measurement model.

The measurement model estimates the likelihood of the observed image given a state.
Given the initial position of the 2D point [x,y;] in the initial frame I, we extract a 15 x 15-
pixel patch around it to keep as the reference template. The likelihood of any state in any
subsequent frame ¢ is measured by first extracting a patch from image I, at the prescribed po-
sition and scale. Once interpolated, the patch is scored based on normalized cross-correlation
(NCO) to the reference template,

pLi|x;) o< f(NCC(Patchyes,Patchy)). (12)

The mapping f(-) aims at being a calibration, transforming raw NCC values to be pro-
portional to likelihood values. f(-) is adapted to each tracked point, and is computed in the
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first frame by measuring the NCC between the template patch and a number of neighboring
patches. We force the mapping to be monotonic, as detailed in the online materials.

4.2 Performance evaluation

We evaluate each tracker’s performance in terms of robustness on the dataset in Section 3.2.
Let p; = [x;,yi], i € [1,...,N] be the position of the N ground-truth points in a given video.
Let p; be the position of the reference point p; estimated by the tracker. We compute the
percentage of successful track estimates, i.e. the fraction of point-positions that match the
ground-truth locations within a certain level of precision, so

1 ¥ . . 1 if |xi—%| <6 and [y;—35:i| <0
robustness = ﬁ;ﬁe(m’pi)’ Do (pir i) = { 0 otherwise.
(13)
This measure of performance is averaged over two runs of tracking. The trackers are not
re-initialized after loss of track, so early loss of track is typically more costly. To obtain the
global performance of the whole dataset, we average the robustness obtained when using the
motion model that was selected for individual videos. 0 is 10 in all our experiments. This is

a tolerant threshold so inaccurate versus failed tracking can be distinguished.

4.3 Tracking robustness of individual motion models

The performance of the six motion models is computed over the whole dataset. As shown in
Table 1, no individual model performs extraordinarily overall. The hypothesis that ideally,
each video should be processed using the most appropriate motion model is explored through
the following tests.

We estimate the idealized performance that is obtained if, among the available motion
models, an oracle chose the one that actually performs best on each video. The ideal perfor-
mance is already better when there is a choice between just the two standard motion models
(0.493). Enlarging the collection with our four specialized models raises the ceiling further
(0.561). Knowing the rather subjective inspection-based labels yields a best-case score of
0.526, which is worse than the six-way performance-based oracle, but a significant improve-
ment nonetheless.

Figure 3 gives insight into the behavior of the different motion models. It shows the
tracking robustness obtained by each motion model for different parameter settings. The
videos are grouped according to their inspection-based labels, and the performance has been
averaged within groups. One can see the inclination of most groups toward their correspond-
ing dynamic model. For example, TRight and TLeft are poor in general, but they largely
outperform the rest on their corresponding families of videos. On the Constant Velocity
videos, CVel outperforms other models over a broad range of parameter settings. Between
the two baselines, CVel tends to outperform Br, but there is no clear winner Fwd and Bwd
perform better than Br in general, except for videos labeled as Brownian, on which they are
nevertheless more robust when the level of noise in the models is high. Fwd vs. Bwd and
TRight vs. TLeft only differ in their respective priors, so it is less surprising that they have
similar performance profiles.
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Figure 3: Average tracking robustness of each motion model (see legend) on each inspection-
labeled group of videos. Different parameter settings, from low to high values of noise
parameters Oy, Oy, Oy, Oy, €tc. are controlled by a single noise level parameter (default =
1). Considering peak-performance and area under the curves, groups are partial to their
respective motion models. Motion models differ in their robustness to parameter settings.

Individual motion models Ideal predictions Our
Br CVel TRight TLeft Fwd Bwd bés\‘,iﬁ" bestfall) ! method
tracking robustness (-1072) 42.3 432 379 372 447 437 493 56.1 52.6 51.9
=+ std. dev. random runs 04 04 0.7 05 02 0.1 0.6 0.4 0.2 0.1
% best choice (+2) 21 11 12 20 20 16 32 100 52 50

Table 1: White background: average tracking robustness of each individual motion model
over all videos (default parameters). Bottom row: percentage of times that motion model
(among six) was the best choice. Dark gray: best-case results if model is selected by either
a performance-based oracle, or our inspection-based labels. Right column: tracking each
video using our classifier’s suggested motion model, using inspection-based training data.

4.4 Tracking robustness using classification

The previous experiments showed how predicting the most appropriate motion model would
lead to significant improvement of tracking robustness. We propose that such predictions can
be made using a set of training videos, assigning them to categories that encapsulate shared
motion properties, and using a classifier to predict the category of a new video at test time.

We train multiclass SVMs using different video descriptors (see Section 3.3) and the
inspection-based category labels, then evaluate them in a leave-one-out manner so that each
video in the dataset acts as the test video once. This produces a motion category prediction
for each video. Table 2 shows the classification performance of the different video descrip-
tors with regard to the target inspection-based labels. The table also shows the tracking
robustness obtained when tracking with the predicted motion model.
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Traj + Tarcet
HOG Traj HOF MBH  HOF+ 1ab§1s
MBH
classification accuracy (%) 30 84 85 83 91 -
tracking robustness (- 1072) 422 52.2 52.09 50.5 51.9 52.6
=+ std. dev. random runs 0.6 0.1 0.01 0.4 0.1 0.2

Table 2: Classifiers trained using different descriptors. First row: classification accuracy
with respect to the target inspection-based labels (leave-one-out training). Below: tracking
robustness obtained using the model predicted for each sequence. Note how features other
than HOG lead to tracking robustness that is superior to the general-purpose motion models.

Ignoring HOG, the combination of three motion-related descriptors yields the best clas-
sification accuracy. However, this does not translate into the best tracking performance. Not
all the classification mistakes are equally costly in terms of tracking. Classification, by de-
sign, is optimized here for mutually-exclusive classes and a binary 0-1 loss, i.e. the five
possible types of error incur the same penalty. In practice, confusing TRight for TLeft could
hurt tracking much more than picking CVel, for example.

Performance-based categories The inspection-based labels are subjective, so in the same
manner, we also trained a classifier on performance-based labels. Classification accuracies
are much poorer (43% for six categories), indicating that this is a harder classification task
than the one targeting inspection-based labels. Nevertheless, the tracking performance is
comparable (0.529), which can be explained by the fact that the “best{all}” ideal predictions
in Table 1 set a higher ceiling. Note that the human effort to obtain the inspection-based la-
bels is much lower, as no manual ground-truth point tracks are needed, only visual inspection
and some generic knowledge of the models.

5 Discussion

We have presented a simple approach to choose among specialized dynamic models. Pre-
classifying each video leads to improved tracking robustness, requiring training-time data
and only weak supervision in the form of inspection-based labels. Brownian motion and
constant-velocity models have comparable tracking robustness in our experiments, while
guidance from our inspection- and performance-based classifiers improves this baseline by
over 20%. While one can imagine other optimization methods to select among dynamic
models, we have not found one as effective as the proposed classification approach. We
explored a heuristic based on track lengths, which scored half way between the general-
purpose baseline models and our method. Further, classification has the potential to scale
well when the number of motion models increases, making the running of each model in a
try-and-see approach more costly than extracting and classifying a feature vector.

We have used a particle filter and a simple measurement model only as a platform for
comparing dynamic models. Classifying a video according to its dynamic model could be
used in combination with (and should be complimentary to) any tracking approach, and may
simplify the challenges associated with, for example, motion segmentation [6].

Several questions arise that could be the object of future work. One unaddressed issue
in this work is the automatization of the discovery of motion classes within the training
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set and the design of adapted models. A first step in this direction would be related to
Kitani et al.’s algorithm [14] to cluster videos into categories of first-person actions in a
fast an unsupervised way. If many dynamic models could be designed systematically, then
videos could be mapped to both motion models and bespoke parameters. It could also prove
useful to apply our method to local regions or in a sliding-window fashion. The experiments
using performance-based supervision highlight that considering the categories as mutually
exclusive may be unnecessarily distracting to the classifier. One approach could be to employ
regression or structured output spaces to predict the relative success of the motion models.
Overall, there is good reason to expect that further very specialized motion models, that are
not good in general but outstanding under known circumstances, are worth developing.
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