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Abstract

Although dense, long-range, motion trajectories are a prominent representation of
motion in videos, there is still no good solution for constructing dense motion tracks in
a truly long-range fashion. Ideally, we would want every scene feature that appears in
multiple, not necessarily contiguous, parts of the sequence to be associated with the same
motion track. Despite this reasonable and clearly stated objective, there has been surpris-
ingly little work on general-purpose algorithms that can accomplish this task. State-of-
the-art dense motion trackers process the sequence incrementally in a frame-by-frame
manner, and associate, by design, features that disappear and reappear in the video, with
different tracks, thereby losing important information of the long-term motion signal.
In this paper, we strive towards an algorithm for producing generic long-range motion
trajectories that are robust to occlusion, deformation and camera motion. We leverage
accurate local (short-range) trajectories produced by current motion tracking methods
and use them as an initial estimate for a global (long-range) solution. Our algorithm
re-correlates the short trajectories and links them to form a long-range motion represen-
tation by formulating a combinatorial assignment problem that is defined and optimized
globally over the entire sequence. This allows to correlate features in arbitrarily distinct
parts of the sequence, as well as handle tracking ambiguities by spatiotemporal regular-
ization. We report the results of the algorithm on both synthetic and natural videos, and
evaluate the long-range motion representation for action recognition.

1 Introduction
There are two popular representations to characterize motion in videos: sparse feature point
tracking and dense optical flow. In the first representation, (good) features are detected
in one frame, and tracked independently in the rest of the frames [18], while in the latter
representation, a flow vector is estimated for every pixel, indicating where the pixel moves
to in the next frame [7, 13]. Figure 1(a,b) illustrate these two representations in spatial-
temporal domain. As revealed in [16], sparse feature point tracking can establish long-
range correspondences (e.g. between hundreds of frames), but only a few feature points are
detected. While useful for some applications, it is a very incomplete representation of the
motion in a scene. For example, it is hard to infer important object information, such as
shape, from a set of sparse feature points. On the other hand, dense optical flow reveals more
about the moving objects, but the integer-grid-based flow fields cannot reliably propagate to
faraway frames.

A natural solution, therefore, is to combine feature point tracking and dense optical flow
fields to a set of spatially dense and temporally smooth trajectories (or particles, tracks)
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Figure 1: Long-range motion vs. state-of-the-art. Top: comparison on a canonical sequence.
Bottom: typical results by a state-of-the-art dense motion tracker [16] at two distinct frames of the
cheetah sequence. The tracks are overlayed on the frames together with their recent path, colored
by their initiation time in the sequence (top left). Distinct sets of motion tracks are covering the same
main object five seconds apart in the video, due to occlusions, deformation and camera motion, thereby
loosing important information on the long-term motion signal.

[16], as shown in Figure 1(c). Despite recent advances in obtaining dense trajectories from a
video sequence [3, 21], it is challenging to obtain long-range dense trajectories. Consider, for
example, the video sequence shown in Figure 1. Representative frames from the source video
are shown together with the motion tracks produced by Sand and Teller [16]. In two distant
frames, the feature points on the same object have different colors, indicating that tracks
for some physical points have disappeared and new ones were assigned, possibly due to
occlusion, mis-tracking or camera motion. Therefore, important long-range correspondences
for characterizing the motion in the scene are lost.

Most prior work on dense motion trajectories share a common framework: motion tracks
are constructed based on the pairwise motion estimated from consecutive frames [16, 21, 22].
[21], for example, explicitly terminates tracks when occlusions are encountered, while the
pixels may become visible again in later frames and will be assigned to new tracks. Particle
video [16] takes a step towards a more global solution by sweeping the video forward and
backward, but particles are still propagated from one frame to the next and higher-order
correlations between frames are only considered, to some extent, within a single contiguous
track. Other local attempts to handle occlusion at the feature level have been made, which
are either restricted to particular scenes involving convex objects [15], or are limited in their
ability to bridge over long occlusions due to their online nature [20].

In this paper, we propose a novel divide and conquer approach to long-range motion
estimation. Given a long video or image sequence, we first produce high-accuracy local track
estimates, or tracklets, and later propagate them into a global solution, while incorporating
information from throughout the video. The tracklets are computed using state-of-the-art
dense motion trackers that have become quite accurate for short sequences as demonstrated
by standard evaluations [1]. Our algorithm then constructs the long-range tracks by linking
the short tracks in an optimal manner. This induces a combinatorial matching problem that
we solve simultaneously for all tracklets in the sequence.

Our method is inspired by the abundant literature on multi-target tracking, which deals
with data association at the object level [2, 5, 6, 8, 10, 11, 14, 19]. Tracking objects and
tracking pixels, however, are quite different in nature, for several reasons. First, many object
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tracking methods are tightly coupled with the object detection algorithm or the application at
hand, using particular image cues and domain-specific knowledge. In contrast, dense motion
trajectories are defined at the pixel level, using generic low-level image features. Second,
while there are typically few (say tens of) objects in a frame, there are billions of pixels, and
millions of tracks to process in a video, which has implications on the algorithm formulation
and design. Third, evaluating dense motion trackers is significantly more challenging than
object tracking. Evidently, there exists numerous datasets for object tracking evaluation, yet,
to our knowledge, there does not exist any dataset for evaluating long-range motion tracks.
The novelty of our work is in pushing ideas from event and object linking down to the feature
level, and our goal is to advance the state-of-the-art in all the above points.

The main contributions of this paper are: (a) a novel divide-and-conquer style algorithm
for constructing dense, long-range motion tracks from a single monocular video, and (b)
novel criteria for evaluating dense long-range tracking results with and without ground-truth
motion trajectory data. We evaluate our approach on a set of synthetic and natural videos,
and explore the utilization of long-range tracks for action recognition.

2 Long-range Motion Trajectories
The input to our system is a monocular video sequence I of T frames. The basic primitive in
our formulation is a track, τ = x(t), where x(t) = (x(t),y(t)) are the track’s spatial coordi-
nates at time t. Also denote tstart and tend the start and end time of track τ , respectively, and
x(t) = /0 if τ is occluded at time t. The temporal coordinates t are always integral (frames),
while the spatial coordinates x(t) are in sub-pixel accuracy. We denote by Ω = {τi} the set
of tracks in the video.

A possible set of tracks Ω to describe motion in the sequence is the one produced by pair-
wise optical flow, i.e. tracks of length 2 between consecutive frames. Similarly, it is always
possible to add an additional track to describe the motion in some part of the sequence. Such
short-range representations, however, do not model important characteristics of the motion
signal over time. We define the long-range tracking problem as the problem of “covering”
the scene with the minimal number of tracks such that each scene point is associated with
exactly one track. This representation will result in a temporally-sparse set of tracks, with
fewer long tracks as opposed to many short ones (Figure 1(d)).

In this work, we take a divide-and-conquer approach to long-range tracking, solving first
for short track segments, or tracklets, and later combining them to form long stable trajec-
tories. Tracklets are estimated using state-of-the-art motion trackers, and we assume they
are sufficiently dense so that approximately every scene feature is covered by some track.
In this work, the spatial density of our representation will be subject to that of the tracking
method we use for initialization, and we focus on the temporal density of the representation
– minimizing the number of tracks covering a single scene feature – leaving treatment of the
spatial density for future work.

3 The Algorithm

3.1 Initialization
We have experimented with several trackers, namely KLT [18], Particle Video (PV) [16],
and the motion tracker by Sundaram et al. (LDOF) [21], based on the large displacement
optical flow method of [3]. PV and LDOF produce spatially-denser trajectories than KLT
and are currently considered state-of-the-art in the field. In our experiments, LDOF con-
sistently produced more plausible and stable tracklets, and so we chose it as initialization
for our algorithm (we compare with initialization using PV in Sect. 4). We use the authors’
implementation available online, and run their tracker using dense sampling (2×2 grid).
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3.2 Track linking
Features that disappear and reappear will be assigned to different tracks, and so our goal is to
combine them into long trajectories such that each scene feature is associated with a single
track with high probability. This induces a combinatorial matching problem that we define
and solve simultaneously for all tracklets in the sequence.

For each track that terminates within the sequence, we consider tracks spawned after
its termination as possible continuing tracks. We call a track we would like to merge with
another – query track – and tracks we consider to append it – candidates. Notice that a query
track might itself be a candidate for another query track.

In a good association of candidates to queries, we expect (a) linked tracks to encode
the same scene feature with high probability, (b) each query track and candidate track to be
merged with at most one track, and (c) spatiotemporally neighboring tracks to be associ-
ated with neighboring candidate tracks. We encode these constraints into a discrete Markov
Random Field (MRF), and compute a locally optimal linkage L of candidate tracks to query
tracks. This linkage directly determines the resulting long-range tracks.

The MRF is formulated as follows (Fig. 2). Each query track τi is represented by a node
in the graph, whose unknown state li is the index of a track to be linked to, and its candidate
tracks form the state space for that node (the state space is likely to vary for different nodes
in the graph). Since we do not wish to link a track at any cost, we present an additional state
to each node with predefined cost δ (parameter), that will indicate that the corresponding
track is deemed terminated. We model the compatibility of τi and a candidate track τ j using
unary potentials (local evidences) φi(li = j). This term will favor candidate tracks which
follow visually-similar features and share common motion characteristics with τi. We then
connect τi’s node with nodes of other query tracks, τ j, which reside in its spatiotemporal
vicinity, and define the pairwise potentials ψi j(li, l j). These terms will assist in cases of
tracking ambiguities and occlusion handling. Finally, an exclusion term, ξ (L), is added,
corresponding to an additional factor node in the graph [4]. This term enforces the linkage
to be injective from queries to candidates. The probability of linkage L is then given by

P(L) ∝ ξ (L)∏
i

φi(li) ∏
i, j∈N (i)

ψi j(li, l j), (1)

where N (i) is the spatiotemporal neighborhood of track τi.

Track Compatibility. Let τi,τ j be a query and candidate tracks, respectively (tend
i < tstart

j ).
We factorize φi into three components: (a) appearance similarity, φa, (b) motion similarity,
φm, and (c) a prior on the feature’s motion while unobserved (occluded), φp, such that φi(li)=
φ a

i (li)φ
m
i (li)φ

p
i (li).

We describe track τi’s appearance at its termination time tend
i , denoted s̃i, based on image

features along the track. For each track point, we compute the SIFT descriptor in multiple
scales and define the track’s visual descriptor as a weighted average of the point descriptors
along its last na frames

s̃i =
1
Z

na−1

∑
k=0

Si(tend
i − k)wo(tend

i − k)wt(k) (2)

where Si(t) is the track’s SIFT descriptor at time t, wo(t) is an outlier weight, measuring
how well Si(t) fits the track’s general appearance, wt(k) is a time-decaying weight, and
Z =∑

na−1
k=0 wo(tend

i −k)wt(k). s̃ j, for candidate track τ j, is symmetrically defined, considering
its first na frames starting from tstart

j .
To measure appearance outliers, we first fit a Gaussian distribution Gi to the SIFT de-

scriptors of the entire track τi, and set wo(t) = Gi(Si(t)). We use exponentially decaying
weight wt(k) = αk

a ,0 < αa < 1 (we will shortly specify the parameters we use). The appear-
ance similarity is then defined in terms of the visual descriptors of the two tracks,
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Figure 2: The graphical model, illustrated for common scenarios of track intermittence (top). Each
track is represented by a node in graph and its state space (dashed lines) is comprised of its candidate
tracks and an additional terminal state. Nearby tracks are connected by edges to regularize the linkage.

(a) (b) (c) 

Figure 3: Track link regularization. Two features are moving from left to right, get occluded, and
reappear from the right side of the occluder. (a-c) Assuming appearance and motion are similar in all
cases, (a) is the link that will result in the highest (best) pairwise linking potential ψi j.

φ
a
i (li = j) = exp

(
− 1

σ2
a

∥∥s̃i− s̃ j
∥∥

1,d

)
, (3)

where we use truncated L1 norm ‖z‖1,d = min(∑ |zi|,d) to account for appearance variation.
We similarly (and symmetrically for τ j) estimate τi’s velocity at its termination point as

ṽi = ∑
nv−1
k=0 vi(tend

i −k)wt(k), where vi(t) is the observed velocity of τi at time t, and wt(k) is
defined above. We then express the motion similarity between τi and τ j with respect to their
estimated end and start velocities, respectively,

φ
m
i (li = j) = exp

(
− 1

σ2
m

∥∥ṽi− ṽ j
∥∥) . (4)

We also use a constant motion model for predicting the track’s position while occluded,

φ
p
i (li = j) = exp

(
− 1

σ2
p

∥∥∥xi(tend
i )−x j(tstart

j )+ ṽi(tend
i )(tstart

j − tend
i )

∥∥∥) . (5)

This term will be typically assigned lower weight (larger σ2
p ), but we found it useful when

points are occluded for extended periods. It can also be replaced with other motion models.

Link Regularization. We define the compatibility between a pair of query tracks as

ψi j(li = q, l j = r) = exp
(
− 1

σ2
r

∥∥uiq−u jr
∥∥) , (6)

where ui j = x j(tstart
j )− xi(tend

i ) is the spatiotemporal vector connecting the end of track τi
with the beginning of track τ j. This enforces neighboring query tracks to be linked to spa-
tiotemporally close candidate tracks, and also penalizes links that cross trajectories behind
occluders (Fig. 3).

Inference. we use loopy belief propagation to maximize Eq. 1 (local maximum is achieved).
We fix na = 20, nv = 7, and αa = 0.4. For efficiency, we prune the candidates for each query
track and consider only the top K matches based on the track compatibility term, φi. We used
K = 100 in our experiments (we discuss the effect of parameters on the algorithm in Sect. 4).
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The free parameters of the algorithm are σa,σm,σp,σr, and δ , which we tuned manually on
the sequences reported in Sect. 4. δ can be used to control the confidence level in which we
allow the algorithm to operate. Larger value will restrict the algorithm to link tracks with
higher certainty. We use the approximation in [4] to handle the exclusion term (refer to their
paper, Sect. 3.3 and 3.4, for the message update equations).

3.3 Dynamic Scenes
In videos with moving camera, it is imperative to separate foreground (objects) from back-
ground (camera) motion, as camera pans and jitters may introduce arbitrary motions to the
video that are difficult to model. We developed a simple motion-based stabilization algo-
rithm that estimates affine camera motion using only the available tracklets. We found this
algorithm to perform well and use it in all our experiments, however any stabilization algo-
rithm can be used. The initial tracklets are first rectified (Fig. 5) and the algorithm continues
from Sect. 3.2. We briefly review our stabilization algorithm in the supplemental material.

4 Experimental Results
We evaluated the algorithm on a set of synthetic and natural videos, and tested its appli-
cability to human action recognition. The parameters were fixed for all the experiments to
σa = 40,σm = 6,σp = 12,σr = 25,δ = 0.2. A spatiotemporal radius of size 15 was used as
the local neighborhood of each track for regularization. Importantly, small variations in K
(e.g. 500, 1000) produced only marginal improvement in the results. The processing times on
all the videos we tested were less than a minute (excluding the initial tracklets computation,
which took 5−15 minutes per video using the author’s binary available online), on a 6-core
Intel Xeon X5690 CPU with 32 GB RAM, and using our distributed C++ implementation.
All the sequences and run times are available in the supplementary material.

In Fig. 4 we visualize the resulting motion tracks for a synthetic sequence (car; see
below) and known computer vision sequences (flowerGarden, sprites). In all cases, the
algorithm manages to link tracks of occluded features (see e.g. tracks on the car, the left
house in flowerGarden, and the faces and background in sprites). Several features on the
leaves and branches of the tree that are not originally tracked continuously are also properly
linked in the result. Fig. 5 shows our result on a challenging natural video with rapid camera
motion (cheetah). Albeit the visual abstractions from shadows, occlusions and motion blur,
the algorithm managed to produce reasonable links, both on the cheetah, capturing its wobbly
motion as it walks behind the tree, as well as on the background, where features enter and
leave the frame due to camera pan. Note that the algorithm makes no use of any notion of an
“object” (e.g. car, person), but is rather based solely on generic low-level cues.

Quantitative Analysis. One of the key challenges in devising long-range motion track-
ing algorithms is their evaluation. Existing datasets with ground-truth motions are available
mostly for short sequences (2-10 frames) [1, 12], while to the best of our knowledge, no
dataset or evaluation framework exists for dense long-range motion. [16] evaluated their
particles by appending to the end of the video a temporally reversed copy of itself and
measuring the error between the particle’s start and end positions. This evaluation does
not support intermittent tracks, as occluded particles cannot be re-correlated. Sundaram et
al. [21] attempted to evaluate occlusion handling using the ground-truth annotations in [12],
by checking if a track drifts between different motion segments. Such evaluation has no
guarantee that the track will be associated with the same feature before and after occlusion.

We propose two complementary measures for long-range motion tracking. The first is
based directly on our declared objective – to associate each scene feature with a single track.
Given ground truth motion trajectories, we can thus consider the number of distinct tracks
each scene point is associated with throughout the sequence as evaluation criteria. Towards
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(a)
car flowerGarden sprites

(b)

(c)

(d)

(e)

(f)
Figure 4: Experimental results (best viewed electronically). For each video (column), (a) is a
representative frame from the sequence, (b) are the resulting long-range motion tracks, (c) and (e)
focus on the tracks involved in the linkage (tracks which are left unchanged are not shown), before (c)
and after (e) they are linked. (d) and (f) show XT views of the tracks in (c) and (e), respectively, when
plotted within the 3D video volume (time advancing downwards). The tracks are colored according to
their initiation time, from blue (earlier in the video), to red (later in the video). Track links are shown
as dashed gray lines in the spatiotemporal plots (d) and (f). For clarity of the visualizations, random
samples (25−50%) of the tracks are shown.
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(a) Tracklets (state-of-the-art) (b) Long-range tracks (this paper)
Figure 5: Result on a challenging natural sequence with moving camera (cheetah). The initial
tracklets (a) and resulting long-range tracks (b), are shown after stabilization (Sec. 3.3), for tracklets
chosen to be linked by the algorithm (unmodified tracklets are not shown). The bottom plots show
spatiotemporal XT slices of the corresponding tracks, similar to Fig. 4.

PV LDOF PV + LR LDOF + LR
rob j 2.58 1.56 1.85 1.23

Table 1: Quantitative evaluation using ground-truth motion trajectories (car). The methods
tested, from left to right: PV [16], LDOF [21], our long-range motion algorithm (LR) using PV as
tracklets, and using LDOF as tracklets. These scores read, for example, “PV associated each scene
point with 2.58 tracks on average throughout the video”.

this end, we produced a synthetic photo-realistic simulation of an urban environment (car;
Fig. 4) using the virtual city of [9]. We recorded the ground-truth motion from the renderer,
and used it to compute ground-truth trajectories – the true 2D trajectories of 3D points in the
scene. We define a point y = (x,y) in frame t to be associated with track τ , if the distance
of the point to the track in that frame, ‖x(t)−y‖, is sufficiently small, typically less than
a quarter of a pixel. We compute the score of a tracking result, rob j(Ω), by summing the
number of tracks associated with each point, for all points in the sequence. We normalize
the score by the number of points which are covered by tracks, to correct the bias towards a
sparse solution, as the spatial density of the representation is not our focus in this work.

The results are summarized in Table 1, using tracks produced by PV, LDOF, and our
algorithm, when using each of their results as initialization. Our algorithm significantly im-
proves each algorithm separately and achieves the best score, 1.23, using the LDOF tracklets,
with over 53% improvement over PV, and 22% improvement over LDOF.

The second measure takes into account the number of tracks initiated over time. Specif-

ically, we compute the ratio r(t) = # tracks starting at frame t
# tracks in frame t , which we call the tracks’

refresh number. In Fig. 6 we plot the refresh number for the aforementioned sequences,
clearly showing that our algorithm initializes less tracks over time, utilizing existing tracks
rather than creating new ones.

Action Recognition. What is long-range motion ultimately useful for? Since this repre-
sentation captures better the motion in the scene, it should facilitate description, modeling
and analysis of different types of motions. Here we describe preliminary experiments with
one particular such task – human action recognition.

Previous work on action recognition combined image intensity statistics with motion
statistics based on optical flow, either at each pixel location or along motion trajectories [20,
22]. In contrast, we are interested in descriptors based solely on the motion structures of
tracks. Moreover, to leverage the long-range representation we also consider the long-term
temporal characteristics of the motion (causality) that is discarded in previous bag-of-words
approaches (Fig. 7(a)).
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Figure 6: Track refresh number, r, as function of time, for the sequences in Fig. 4 and 5.

We used the KTH human action database [17] consisting of six human actions performed
by 25 subjects, commonly used in this domain, and extracted long-range motion tracks as
described above (using the same parameters for the algorithm). We divide each long-range
track into nσ ×nσ ×nτ spatiotemporal volumes (we used nσ = 7,nτ = 5), and compute his-
tograms of the velocities of tracks passing within each volume. The descriptor of each track
is then defined as the concatenation of those motion histograms (Fig. 7(a)). To normalize
for tracks of different lengths, we quantize each track to a fixed number of spatiotemporal
cells relative to its length (5 cells in our implementation) and sum-up the histograms in each
cell. Notice that the temporal extent of those cells is dependent on the length of the track –
cells of longer tracks will be temporally longer than those of shorter tracks. This essentially
captures motion structures at different temporal scales.

We then construct a codebook by clustering a random set of descriptors using K-means,
and define the descriptor of each video as the histogram of the assignments of its motion
track descriptors to the codebook vocabulary. For classification we use a non-linear SVM
with χ2-kernel (see [22] for the details). As in [17], we divided the data per person, such that
16 persons are used as training set and 9 persons are used for testing. We train the classifier
on the training set and report recognition results on the test set in Figure 7.

The overall recognition rate in our preliminary experiment on this dataset, 76.5% (Fig. 7(b)),
does not reach the state-of-the-art using spatiotemporal features, 86.8% [20]. However,
while the best-performing methods use several types of features (including optical flow
statistics), our descriptor is based solely on the tracks’ motions. Our algorithm outper-
forms [17], 71.7%, which is based on spatiotemporal image structures. Fig. 7(c) shows
that the long-range trajectories outperformed the initial tracklets on almost all action classes,
demonstrating the potential of a long-range motion representation for action recognition.

5 Conclusion
We have presented an algorithm for obtaining long-range motion trajectories in video se-
quences. In order to properly handle the disappearance and reappearance of features, distant
frames in the sequence need to be correlated. Following a divide-and-conquer paradigm, we
build upon state-of-the-art feature trackers to produce an initial set of short accurate track
estimates, and then link the tracks to form long trajectories such that each scene feature
is associated with a single track throughout the video with high probability. We formulate
track linking over the entire sequence as a combinatorial association problem based on ap-
pearance and motion cues, as well as track inter-relations. This both utilizes information
from different parts of the sequence and helps resolve link ambiguities. We demonstrated
encouraging results on both synthetic and natural sequences. For all sequences we tested,
the algorithm manages to improve the state-of-the-art results. We also showed applications
of the long-range trajectory representation to human action recognition.
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Figure 7: Recognition results on the KTH human action database. (a) Our motion descriptor
(bottom) in comparison to existing motion descriptors based on optical flow (top) and short-range
tracks (middle). (b) The confusion matrix using the long-range trajectories produced by our algorithm.
(c) Comparison of the recognition rates when using tracklets (used as initialization for our algorithm)
versus the resulting long-range trajectories.
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