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Segmentation of skeletal muscles in 3D Magnetic Resonance Imag-
ing, which poses some very specific issues: simultaneous multi-object
segmentation, non-discriminative appearance of the muscles, partial con-
tours between them, large inter-subject variations, spurious contours due
to fat infiltrations. For these reasons, it is necessary to impose knowledge-
based shape priors into segmentation methods. In [2, 3, 4], segmen-
tation is achieved with multi-object elastical deformable models, using
either a reference atlas or a hierarchical statistical prior model. A dis-
crete optimization procedure on a graph framework is used in [7], where
a higher-order pose invariant shape prior is imposed on surface landmarks
nodes. A pixel-wise region-based approach was proposed in [1] where
prior knowledge is enforced by embeding the model into a statistical low-
dimensional non-linear manifold through PCA in the Isometric Log-Ratio
space. Random Walks for image segmentation, presented in [6], is a nu-
merical method for computing globally large discrete regions-based seg-
mentation methods, and is notoriously robust to partial contours. Prior
knowledge on intensity within the RW formulation was introduced in [5].

In this paper, we propose a segmentation method based on RW, in
which shape deformation is constrained to remain close to a PCA shape
space built from training examples. Using the PCA allows us to model
complex non-rigid shape variations relying on a few eigen-modes. Our
method also benefits from the high performances of the RW optimization
process.

The RW method amounts to computing the probability xs
i that the

node vi is assigned to the label s . It was shown ([6]) that this probabilities
minimize the functional:

Es
RW (xs) = xsT Lxs (1)

where L is the combinatorial Laplacian matrix of the graph, defined as:

∀(i, j) ∈ E , Lii = ∑
k

wik, Li j =−wi j. (2)

It is common practice to use as a Gaussian weighting function for wi j.
Once computed xs for each label s, the segmentation is obtained by re-
taining the label of maximum probability: ŝi = argmaxs xs

i .
Since minimizing (1) is an independent process for each label s, the

whole RW process can be equivalently synthesized in one equation, via
concatenation of the xs and diagonal concatenation of L:

ERW (x) = xT L̄x. (3)

The principle of a shape space is to design a low dimensional affine
space approximating this implicit space. Assume we possess T co-registered
segmented training volumes. We perform the PCA on vectors

{
x̂i}

i=1...T ,
which are ground truth segmentations represented as probability vectors.
Retaining the n eigen-modes of greatest variance, the projection of any
segmentation in the shape space is represented as:

x̃ = x̄+Γγ.

Thus, any segmentation x can be expressed as:

x = dx+Γγ + x̄ (4)

where dx ∈ RKN×1 is the deviation of x from the shape space.
In order to obtain a segmentation which remains close to the shape

space, we want to minimize the objective function (3) with respect to

Figure 1: Effect of the PCA shape prior: (left) mean segmentation us-
ing x = x̄, (middle) shape space segmentation using x = Γγ + x̄, (right)
segmentation with shape prior using x = dx+Γγ + x̄. The shape space
segmentation fits the boundaries better than the mean segmentation, but
has fuzzy contours due to the approximation of projecting complex shapes
into a linear subspace.

both dx and γ , while keeping dx small. This leads us to the following
functional:

E1 (dx,γ) = (dx+Γγ + x̄)T L̄(dx+Γγ + x̄)+λ ‖dx‖2 . (5)

The minimum of (5) verifies:(
AT L̄A+λB

)
y = AT L̄x̄ (6)

with:

y =
[

dx
γ

]
, A = [IKN Γ] , B =

[
IKN 0
0 0

]
. (7)

The system of equations (6) can be solved with iterative methods like
Bi-Conjugate Gradient. Computation time is approximately 15 min per
segmentation on a 2.8 GHz Intel process with 4GB of RAM. We present
results obtained with our method on a set of 3D MR volumes of muscles.
Our data set is comprised of 30 volumes of the right thigh of healthy
subjects, covering a wide range of ages and morphologies. On figure 1,
we show the effect of the PCA shape prior on one example of our dataset.
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