Manifold-enhanced Segmentation through Random Walks on Linear Subspace Priors
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Segmentation of skeletal muscles in 3D Magnetic Resonance Imag-
ing, which poses some very specific issues: simultaneous multi-object
segmentation, non-discriminative appearance of the muscles, partial con-
tours between them, large inter-subject variations, spurious contours due
to fat infiltrations. For these reasons, it is necessary to impose knowledge-
based shape priors into segmentation methods. In [2, 3, 4], segmen-
tation is achieved with multi-object elastical deformable models, using
either a reference atlas or a hierarchical statistical prior model. A dis-
crete optimization procedure on a graph framework is used in [7], where
a higher-order pose invariant shape prior is imposed on surface landmarks
nodes. A pixel-wise region-based approach was proposed in [1] where
prior knowledge is enforced by embeding the model into a statistical low-
dimensional non-linear manifold through PCA in the Isometric Log-Ratio
space. Random Walks for image segmentation, presented in [6], is a nu-
merical method for computing globally large discrete regions-based seg-
mentation methods, and is notoriously robust to partial contours. Prior
knowledge on intensity within the RW formulation was introduced in [5].

In this paper, we propose a segmentation method based on RW, in
which shape deformation is constrained to remain close to a PCA shape
space built from training examples. Using the PCA allows us to model
complex non-rigid shape variations relying on a few eigen-modes. Our
method also benefits from the high performances of the RW optimization
process.

The RW method amounts to computing the probability x; that the
node v; is assigned to the label s . It was shown ([6]) that this probabilities
minimize the functional:
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where L is the combinatorial Laplacian matrix of the graph, defined as:

V(i,j) €&, Lii=Y wix, Lij = —wij. 2
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It is common practice to use as a Gaussian weighting function for w;;.
Once computed x* for each label s, the segmentation is obtained by re-
taining the label of maximum probability: §; = argmax;x;.

Since minimizing (1) is an independent process for each label s, the
whole RW process can be equivalently synthesized in one equation, via
concatenation of the x* and diagonal concatenation of L:
" Lx. 3)

ERW (x) =

The principle of a shape space is to design a low dimensional affine

space approximating this implicit space. Assume we possess T co-registered

segmented training volumes. We perform the PCA on vectors {)?i }i:I R
which are ground truth segmentations represented as probability vectors.
Retaining the n eigen-modes of greatest variance, the projection of any
segmentation in the shape space is represented as:

X=x+TI7.
Thus, any segmentation x can be expressed as:
x=dx+Ty+x 4)

where dx € REN*1 is the deviation of x from the shape space.
In order to obtain a segmentation which remains close to the shape
space, we want to minimize the objective function (3) with respect to

Figure 1: Effect of the PCA shape prior: (left) mean segmentation us-
ing x = %, (middle) shape space segmentation using x = 'y + X, (right)
segmentation with shape prior using x = dx 4+ I'y+X. The shape space
segmentation fits the boundaries better than the mean segmentation, but
has fuzzy contours due to the approximation of projecting complex shapes
into a linear subspace.

both dx and ¥, while keeping dx small. This leads us to the following
functional:

E; (dx,y) = (dx+Ty+%)T L(dx+Ty+%)+ A ||dx|*. (5)
The minimum of (5) verifies:
(ATZA + 7LB> y=ATLx 6)
with:
| odx . | Ignv O

The system of equations (6) can be solved with iterative methods like
Bi-Conjugate Gradient. Computation time is approximately 15 min per
segmentation on a 2.8 GHz Intel process with 4GB of RAM. We present
results obtained with our method on a set of 3D MR volumes of muscles.
Our data set is comprised of 30 volumes of the right thigh of healthy
subjects, covering a wide range of ages and morphologies. On figure 1,
we show the effect of the PCA shape prior on one example of our dataset.
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