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Abstract

We present a structural matching technique for robust classification based on image sets.
In set based classification, a probe set is matched with a number of gallery sets and
assigned the label of the most similar set. We represent each image set by a sparse
dictionary and compute a similarity matrix by matching all the dictionary atoms of the
gallery and probe sets. The similarity matrix comprises the sparse coding coefficients
and forms a fully connected directed graph. The nodes of the graph are the dictionary
atoms and the edges are the sparse coefficients. The graph is converted to an undirected
graph with positive edge weights and spectral clustering is used to cut the graph into
two balanced partitions using the normalized cut algorithm. This process is repeated
until the graph reduces to critical and non-critical partitions. A critical partition contains
atoms with the same gallery label along with one or more probe atoms whereas a non-
critical partition either consists of only probe atoms or atoms with multiple gallery labels
with no probe atom. Using the critical partitions, we define a novel set based similarity
measure and assign the probe set the label of the gallery set with maximum similarity.
The proposed algorithm is applied to image set based face recognition using two standard
databases. Comparison with existing techniques shows the validity and robustness of our
algorithm in the presence of outlier images.

1 Introduction
In image set based classification, each training class is represented by one or more image sets
and each set contains multiple images with the same label. The query set also consists of
multiple images with the same but unknown label. The query image set is assigned the label
of the nearest class using some similarity criterion. Although, nearest neighbor techniques
can still be applied to image set classification, they do not fully exploit the within set structure
which offers additional information and is robust to outliers. Set-to-set matching is preferred
because an image set offers significantly more information compared to a single image.
Multiple images in a set compliment the appearance variations of a subject. Considering
the example of face recognition, an image set may contain arbitrary pose and expression
variations of the same person.

Image set classification is a generalization of video based classification [6, 10]. The
main difference is that in videos, the adjacent frames have minor variation, are temporally
related and usually acquired under similar illumination with the same sensor. On the other
hand, no such assumptions are made in image sets. In fact, the images of a set may come
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Figure 1: Block diagram of the Hierarchical Sparse Spectral Clustering (HSSC) algorithm.

from completely different sources such as personal photo albums, images collected from the
Internet or multiple surveillance cameras.

Classification based on image sets has recently gained significant interest from the re-
search community [1, 12, 16, 19, 22]. Although classification based on image sets offer
more potential in terms of accuracy and robustness, it also introduces two main challenges.
Firstly, the representation of an image set is challenging because of the large within-set vari-
ations and the lack of any semantic information. For example, in face recognition, it is well
known that the images of different identities in the same pose are more similar compared
to the images of the same identity in different poses. Therefore, one of the major chal-
lenge posed by the image set classification is to efficiently exploit within-set similarities and
across-set dissimilarities. One obvious approach to overcome this challenge is to divide each
set into smaller subsets representable in a more compact and unambiguous way.

Image set classification techniques can be broadly divided into sample based (nearest
neighbor) or structural based. Sample based techniques measure the distance between certain
samples of the sets. For example, between the set centers or their nearest neighbor samples.
More sophisticated techniques measure the distance between nearest neighbors of two sets
under some constraints. For example, Cevikalp and Triggs [5] represent sets with affine hulls
and use various bounds to constrain the search for nearest neighbors. Hu et al. [22] used the
sparsity constraint to find the nearest points between two sets. Sample based techniques offer
significant classification accuracy, however, they are vulnerable to outliers. For example, if
a query set contains a single outlier image which is closer to a different gallery set, it will be
misclassified based on that sample alone.

Structural techniques learn the underlying structure of a set, for example with one or
more linear subspaces, and measure structural similarities. Manifold-manifold distance
(MMD) [16] clusters the images of each set into multiple linear subspaces. The ratio be-
tween Euclidean and geodesic distance is used as a criterion to cluster the images into the
same or distinct subspaces. The similarity between two sets is defined as the canonical cor-
relation between the nearest linear subspaces. However, the authors of [16] also use the
nearest neighbor as an additional criterion in their similarity measure. Kim et al. [20] per-
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formed discriminative learning using canonical correlations. More specifically, a discrimi-
native function is learned that maximizes the within-class and minimizes the between-class
canonical correlations. Manifold Discriminant Analysis (MDA) [15] learns an embedding
space where manifolds of different classes are better separable. Manifolds are represented by
multiple linear subspaces similar to [16]. The scatter within a linear subspace is minimized
and the scatter between the linear subspaces of different classes is maximized. Similarity
between two sets is computed as the pairwise distances between the local linear models of
their manifolds in the MDA embedding space. Structural techniques are sensitive to noise
within the sets. For example, two sets of the same identity can result in very different linear
subspaces or manifolds.

We propose Hierarchical Sparse Spectral Clustering (HSSC), a structure based image
set classification algorithm which is robust to noise and outliers. The query and the gallery
sets are represented by sparse dictionaries and an unsupervised clustering of the dictionary
atoms is performed irrespective of their labels. The dictionary atoms are spectrally clustered
into two partitions. Atoms from the same gallery or probe set can end up in either cluster.
Clusters containing atoms from the query set and multiple gallery sets are non-decisive.
Therefore, they are further divided until all clusters become decisive. Decisive clusters are
of two types, critical and non-critical. A non-critical cluster contains either samples from
only the query set or no sample from the query set. These clusters reduce the search space
and are of no further use. On the other hand, a critical cluster contains some samples from
the query set and a single gallery set. Based on the distribution of gallery and query set
atoms in all critical clusters, we define a new similarity measure for set classification. We
also define a confidence measure based on which we repeat the classification process with
varying dictionary sizes until the probe set’s identity is found with high confidence (see
Fig. 1).

Experiments are performed on the Honda/UCSD [7] and CMU Mobo data [14] for face
recognition based on image sets. Comparison with existing techniques shows the efficacy of
the proposed algorithm. We also test robustness to outliers by mixing an increasing number
of imposter images in the probe set. The proposed algorithm demonstrates significant ro-
bustness by achieving 100% recognition rate on the Honda database in the presence of up to
9 imposters selected randomly from a random gallery set and mixed with the probe set.

1.1 Contributions
To the best of our knowledge, no set classification technique similar to HSSC exists. The
closest approach is the sparse subspace clustering by Elhamifar and Vidal [4] which is only
meant for linear and affine subspace clustering as opposed to classification. A direct appli-
cation of [4] to image set based classification is possible only if the bases of the gallery sets
are linearly independent, which is never the case. If the bases were linearly independent, the
classes would be linearly separable and hence classification would be trivial in that case. In
difficult classification problems such as face recognition, different classes share a common
structure that is why generic face detection algorithms can detect all faces.

Our main contribution is that we simultaneously perform clustering and matching. Rather
than imposing constraints on the number or dimensionality of the clusters, we constrain the
contents of the final clusters such that they favor un-ambiguous classification. As opposed to
a fixed clustering of the gallery sets, the clustering is guided by the probe set during match-
ing which offers more robustness to noise and variations between different sets of the same
identity. More precisely, the probe set plays a role in deciding how many clusters should be
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Figure 2: HSSC of a query and four gallery sets. The first clustering resulted in two non-
decisive clusters, L and R. L is further divided into LL (critical) and LR (non-decisive)
clusters. LR is further divided into LRL (critical) and LRR (non-critical). R is divided into
RL (non-critical) and RR (non-decisive). RR is further divided into RRL (critical) and RRR
(non-critical). The process stops when all clusters are either critical or non-critical.

there. Moreover, we perform hierarchical spectral clustering irrespective of the labels which
is more accurate and robust to outliers. Finally, we define a novel structure based similarity
measure for set classification along with a confidence measure.

2 Hierarchical Sparse Spectral Clustering (HSSC)

A schematic diagram of the HSSC algorithm is shown in Fig. 1. In the following subsections
details of each step are given.

2.1 Dimensionality Reduction

The intrinsic data dimensionality in the image sets is often less than the apparent dimensions.
Therefore, we reduce the data dimensionality using PCA whose basis is computed from the
training (gallery) sets. Let G = {Xi}g

i=1 ∈Rl×N be the collection of the images (or features)
of all gallery sets in vectorized form. Here, N = ∑

g
i=1 ni and the ith image set has ni vectors

each of dimension l. The gallery contains g image sets where each set Xi = {x j}ni
j=1 ∈Rl×ni .

Each column x j of Xi could be a feature vector (such as LBP features [18] ) of the image or
simply the pixel values. Note that the number of vectors ni may vary across image sets.

The gallery vectors are mean centered and their covariance matrix is computed as C =
GGT ∈Rl×l . Then eigenvectors and eigenvalues of C are computed and the most significant
m eigenvectors E = {ei}m

i=1 corresponding to the largest m eigenvalues V = {vi}m
i=1 are se-

lected such that ∑
m
i=1 v2

i /∑
l
i=1 v2

i ≥ 0.999 i.e. 99.9% energy is retained. The gallery images
are projected on the selected eigenvectors E for dimensionality reduction: Gr = ET G. Each
projected gallery vector is then normalized to unit magnitude.

The query image set Xq is also centered with respect to its mean, projected on the same
basis E: X̂t = ET X̂t and normalized to unit magnitude.
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2.2 Sparse Dictionary Learning
For each gallery set, we pre-compute sparse dictionaries of varying sizes. The spectral
clustering starts using the smallest size dictionary and chooses the next size up only if the
classification confidence is low. Note that the choice of sparse, small size, dictionary as
well as pre-computation of variable size dictionaries is done to speed up the online matching
process. A sparse dictionary must be able to represent all images in an image set as a sparse
linear combination of its atoms.

Given an image set Xi = {x j}ni
j=1 ∈ Rm×ni , its dictionary Di ∈ Rm×pi should be able to

minimize the cost function 1
n ∑

ni
j=1 f (x j,Di) [2]. Each column of Di is called an atom and

represents a basis vector for image set Xi. Unlike PCA basis, the dictionary atoms need not
be orthogonal. We use the convex `1 formulation of the Lasso as the cost function [8]

f (x j,Di) = min
αi

1
2
||x j−Diαi||22 +λ ||αi||1 , (1)

and use the Least Angle Regression (LARS) algorithm [21] to solve it. Here, αi = {αi j}p
j=1 ∈

Rpi is a vector of sparse linear coefficients and λ is a regularization parameter. Substituting
the value of f (x j,Di) in the cost function

min
αi,Di

( 1
ni

ni

∑
j=1

1
2
||x j−Diαi||22 +λ ||αi||1

)
. (2)

This cost function is not convex for unknown Di and αi. However, it is convex with respect to
one variable if the other is known. Therefore, the solution is obtained by alternating between
Di and αi [8]. Based on Equation 2, an efficient dictionary learning algorithm has been
proposed by [11] which we use in the proposed HSSC algorithm.

2.3 Sparse Similarity Matrix Computation
We start by choosing the smallest size gallery dictionaries, each with pi atoms per gallery
set. During online matching, a dictionary with pq atoms is learned for the query (probe)
image set. Let DG = {Di}g

i=1 ∈Rm×P, where P = ∑
g
i=1 pi be the learned dictionaries for the

gallery image sets and Dq ∈Rm×pq be the dictionary for the query image set.
Each dictionary atom in DG inherits a label from its parent image set whereas a test label

t is assigned to each atom in Dq. Let LG = {Li}g
i=1 ∈ RP be the labels of the gallery image

sets, where Li = {l j}pi
j=1 ∈ Rpi are the labels for each image set such that all images in the

same set get the same label. Let Lq = {l j}
pq
j=1 ∈Rpq be the label for the query image set. We

append dictionaries DG and Dq in an array Ds = [DG|Dq] ∈Rm×(P+pq) as well as their labels
Ls = [LG|Lq] ∈RP+pq . However, the labels are not used at this stage.

As a similarity measure, we compute the sparse coefficients required to represent a par-
ticular dictionary atom as a linear combination of the remaining atoms similar to [4]. More
precisely, we take one atom di ∈Rm out of Ds and represent it as a sparse linear combination
of the remaining dictionary D′s = {Ds}−{di}+{0i} ∈Rm×(P+pq). In D′s, 0i is the column of
zeros placed as column i to maintain the original matrix size. We use a fast implementation
of LARS [3] to find the sparse coding coefficients. The sparse coding coefficients αi of di
are computed as

min
αi
||di−D′sαi||22 s.t. ||αi||1 ≤ λ . (3)
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We append all αi as columns in the similarity matrix S = {αi}
P+pq
i=1 ∈R(P+pq)×(P+pq) and

apply spectral clustering to group dictionary atoms into clusters.

2.4 Graph Laplacian Computation
We can consider each dictionary atom in Ds as a node in a fully connected graph G, and
the sparse linear coefficients given in S as the edge weights connecting any two nodes in
G. Thus the similarity matrix S forms an adjacency matrix for G, which is a directed graph
because in general S(i, j) 6= S( j, i). As some of the coefficients in S may be negative, we take
the absolute of all values and to make the graph G undirected we add the edge weight S(i, j)
with the edge weight S( j, i). The modified adjacency matrix for the resulting undirected
graph having all positive weights is given by

A = abs(S)+abs(ST ) . (4)

In order to apply spectral clustering [9] on the graph represented by matrix A, we first com-
pute the degree matrix of the graph, which is a diagonal matrix containing the degree of each
vortex i at the diagonal position (i, i). The degree matrix D is given by

D(i, j) =

{
∑

P+pq
i=1 A(i, j) if i = j

0 if i 6= j .

Next, using D and A, we compute the un-normalized graph Laplacian matrix by simple
subtraction, L = D−A. The graph Laplacian is useful for clustering graph A into different
partitions by computing the eigenvectors of L. We also use normalized graph Laplacian as
recommended by [17]:

Lw = D−
1
2 LD−

1
2 (5)

2.5 Graph Partitioning
We partition the graph represented by the adjacency matrix A into two disjoint partitions AL
and AR, such that the sum of edge weights across the cut is minimum. The loss function may
be written as ∑i∈|AL|, j∈|AR|A(i, j), where |AL| and |AR| represent the number of nodes in each
partition. It is easy to implement the minCut algorithm, however, it may yield unbalanced
partitions. In the extreme case, a simple minCut implementation may separate only one node
from the rest of the graph. In order to ensure that both partitions are balanced, we minimize
the normalized cut NCut objective function [17]

1
VAL

∑
i∈|AL|, j∈|AR|

A(i, j)+
1

VAR
∑

i∈|AL|, j∈|AR|
A(i, j), (6)

where VAL is the sum of all edge weights attached to the vertices in AL. As the number of
nodes starts reducing in any partition, the objective function starts increasing.

Unfortunately, the minCut using the NCut objective function turns out to be an NP hard
problem and only approximate solutions can be computed by using spectral clustering. It has
been shown in [17] that the second eigenvector of Lw may provide an approximate solution
to a relaxed NCut problem. The second eigenvector of Lw may be used to partition the graph
by using the simple criteria {

vi ∈ AL if e2(i)≥ 0
vi ∈ AR if e2(i)< 0
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where e2 is the second eigenvector of Lw. The higher order eigenvectors of Lw may also be
used for further partitioning the graph into smaller clusters. However, the approximation er-
ror gets accumulated and the clustering performance degrades. It is, therefore, recommended
to recompute Lw for each partition and repeat the same process hierarchically to get smaller
spectral clusters [17].

We recursively perform binary partitioning of the graph G based on NCut until we get
only decisive clusters. Decisive clusters are either critical or non-critical. Critical clusters
contain atoms from only one gallery set along with query atoms. Non-critical clusters either
contain only query atoms or no query atom.

2.6 Set Based Similarity Computation
Let the number of critical clusters be nc, and Sq ∈Rnc contain the number of query atoms in
each nc. Let SG ∈ Rnc represent the number of gallery atoms in each cluster and LG ∈ Rnc

represent the label of the gallery atoms in each cluster. Using these three arrays, we compute
two more, gallery count array Gc ∈ Rg and query count array Qc ∈ Rg. In Gc and Qc, each
index represents one gallery image set label. Each value in Gc represents the number of
atoms of that label which are found in critical clusters and each value in Qc represents the
number of query atoms in critical clusters accompanied by any atom of that particular label.
We pointwise multiply these two arrays and get the final similarity score of query set with
each gallery set as

ρ(i) = Gc(i)Qc(i) , (7)

where ρ ∈ Rg represents the similarity between the query and each gallery set. The label
assigned to the query set is the index of ρ exhibiting maximum similarity ρ1

max = max(ρ)

Lq = i , s.t. ρ(i) == ρ
1
max . (8)

From the sparseness of the similarity array ρ , we compute the match confidence. We observe
that for larger sized dictionaries, if there is only one peak in ρ with maximum energy Emax,
the confidence index is 100%. Such matches are always correct. The maximum energy peak
at ρ(i) will be Emax = pi pq, where pi is the number of dictionary atoms in the ith gallery
image set and pq is the number of dictionary atoms in the query image set. A measure of
peak energy is η = ρ1

max/Emax. In many cases, the ρ array may not be very sparse and may
contain more than one peaks. We consider the maximum peak ρ1

max as the signal and the
second maximum peak ρ2

max as the noise. The signal to noise ratio (SNR) must be high for a
good match: SNR = ρ1

max/ρ2
max. We combine both η and SNR in one measure

ζ =
(ρ1

max−ρ2
max)

Emax
, (9)

where ζ is the confidence. If ζ is high, we stop the process and accept the label with 100%
confidence. Otherwise, we repeat the whole process with the next higher dictionary size.
Easy cases are identified at smaller dictionary sizes. However, challenging ones may never
get high confidence. In this case, we stop beyond a certain dictionary size and assign the
query set the most repeated label.

3 Experimental Validation
We evaluate the proposed HSSC algorithm on the Honda/UCSD [7] and CMU Mobo [14]
databases. In both cases, faces are detected using [13], cropped and converted to gray scale.
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             (a)                                                                          (b) 

Figure 3: Example images from (a) Honda/UCSD dataset. (b) CMU Mobo dataset. Each
row is selected from one different image set.

For Honda database, we use 20x20 face images (similar to [16]) after histogram equalization.
The number of images per set varies from 17 to 645. For CMU Mobo dataset, face images
are resized to 40×40 (similar to [5]) and their LBP features [18] are used.

In both cases, we project data on a 200 dimensional PCA space computed from only
the gallery image sets. For dictionary learning, we use the open source sparse modeling
software (SPAMS) [11] to solve Equation (1) with 200 iterations and λ = 0.15. The size of
dictionary is varied from 6 to 21 atoms for each gallery set as well as for the query set with
an increment of 1 atom. Recall that the gallery dictionaries are learned off line and only the
probe dictionaries are learned online.

The confidence can either be high or low and its threshold varies with the dictionary size
pi. For a high confidence, one of the following conditions must be met: (1) pi ≤ 10 and
ζ = 1, (2) 10 < pi ≤ 15 and ζ ≥ 0.8, (3) 15 < pi ≤ 20 and ζ ≥ 0.7, (4) pi ≥ 21 and ζ ≥ 0.6.
If none of these conditions is satisfied, but a particular test set gets the same label for over
half the number of iterations, the confidence of that label is also assumed to be high.

We compare the proposed HSSC algorithm with existing image set classification methods
including Discriminant Canonical Correlation (DCC) [20], Manifold to Manifold Distance
(MMD) [16], Manifold Discriminant Analysis (MDA) [15], linear Affine Hull based Image
Set Distance (AHISD) [5] and linear Convex Hull based Image Set Distance (CHISD) [5].
The parameters of all methods are carefully optimized. For DCC, the embedding space di-
mension is set to 100, the subspace dimensionality is set to 10 and set similarity is computed
from the 10 maximum correlations. For MMD and MDA, the parameters are selected as
suggested in [16] and [15].

3.1 Results on the Honda/UCSD Dataset
This dataset contains 59 videos of 20 subjects with varying poses and expressions. Sample
images are given in Fig.3. Our experiments are based on the configuration proposed by [7].
We randomly selected one image set per subject as gallery and the remaining 39 sets were
used as query sets. Identification rates of different techniques are summarized in Table 1.
HSSC outperforms all other techniques and achieves 100% accuracy. Although correctly
classified, only 15.38% matches were with high confidence and 84.61% with low confidence.
Note that our results for CHISD in Table 1 are lower compared to [5] because we use smaller
image sizes i.e. 20x20 compared to 40x40 in [5].

3.2 Results on the CMU Mobo Dataset

CMU Mobo dataset contains 96 video sequences of 24 subjects walking on a treadmill. For
each subject there are four sequences for four different walking patterns, slow, fast, inclined,
and ball carrying. Each sequence was captured by a different camera. Image features con-
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Table 1: Identification Rate comparison of various techniques on Honda/UCSD dataset
Techniques Performance
DCC [20] 94.87%
MMD [16] 94.87%
MDA [15] 97.44%
AHISD [5] 89.74%
CHISD [5] 92.31%
HSSC 100.00%

Table 2: Average identification rates and standard deviations on the CMU Mobo dataset
Technique Average Performance ± STD
DCC [20] 91.53 ± 1.66%
MMD [16] 89.72 ± 3.48%
MDA [15] 95.97 ± 1.90%
AHISD [5] 94.58 ±2.57%
CHISD [5] 96.52 ± 1.18%
HSSC 96.67 ± 1.87%

sist of uniform LBP histograms using circular (8, 1) neighborhoods extracted from 8× 8
gray scale patches. We randomly select one image set for each subject as training and the
remaining three as testing. We perform a 10-fold experiment by repeating the random se-
lection 10 times and average the recognition rates. Results are reported in Table 2. The
proposed HSSC algorithm outperforms all methods. In this case, the HSSC algorithm iden-
tifies 95.14% matches with high confidence and only 4.86% matches with low confidence.
The identification rate for only high confidence matches is 98.34%±1.59.

Note that the performance of CHISD [5] is very close to HSSC. However, CHISD is a
sample based classification technique and is not robust to outliers while, HSSC is a structure
based technique and more robust to outliers as demonstrated in our next experiment.

3.3 Robustness to Outliers

We have performed two different robustness experiments on the Honda data set. In the first
experiment, in each of the probe set we added randomly selected nr images from a randomly
selected gallery set and the value of nr is varied from 1 to 12. The accuracy of HSSC
remained 100% for nr ≤ 11 and 97.44% for nr = 12. In the second experiment, in each of
the probe set we added nr×g images where g= 20 is the gallery size and nr images are taken
from each gallery and added to probe sets. nr is varied from 1, 2 and 3 and the actual number
of outliers added to each probe set are 19, 38 and 57. The accuracy of HSSC algorithm has
remained 100%, 97.44% and 92.30% respectively for the three cases. These experiments
demonstrate that HSSC is a significantly robust algorithm.

4 Conclusion

We presented a hierarchical sparse spectral clustering algorithm for image set classification.
The proposed algorithm performs unsupervised hierarchical clustering guided by the probe
set which is more accurate and robust to outliers. Experiments on two benchmark datasets
show that the proposed algorithm outperforms existing techniques. We also demonstrated
the robustness of our algorithm to outliers in the query set.
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