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We present a structural matching technique for robust classification based
on image sets. In set based classification, a probe set is matched with a
number of gallery sets and assigned the label of the most similar set. We
represent each image set by a sparse dictionary and compute a similar-
ity matrix by matching all the dictionary atoms of the gallery and probe
sets. The similarity matrix comprises the sparse coding coefficients and
forms a fully connected directed graph. The nodes of the graph are the
dictionary atoms and the edges are the sparse coefficients. The graph is
converted to an undirected graph with positive edge weights and spectral
clustering is used to cut the graph into two balanced partitions using the
normalized cut algorithm. This process is repeated until the graph reduces
to critical and non-critical partitions. A critical partition contains atoms
with the same gallery label along with one or more probe atoms whereas
a non-critical partition either consists of only probe atoms or atoms with
multiple gallery labels with no probe atom. Using the critical partitions,
we define a novel set based similarity measure and assign the probe set
the label of the gallery set with maximum similarity. The proposed algo-
rithm is applied to image set based face recognition using two standard
databases. Comparison with existing techniques shows the validity and
robustness of our algorithm in the presence of outlier images.

A schematic diagram of the proposed algorithm is shown in Fig. 1.
The intrinsic data dimensionality in the image sets is often less than the
apparent dimensions. Therefore, we reduce the data dimensionality using
PCA basis computed from the training (gallery) sets. For each reduced
dimensionality gallery set, we pre-compute sparse dictionaries of varying
sizes. A sparse dictionary must be able to represent all images in an image
set as a sparse linear combination of its atoms. Given an image set Xi =
{x j}ni

j=1 ∈Rm×ni , its dictionary Di ∈Rm×pi should be able to minimize

a cost function 1
n ∑

ni
j=1 f (x j,Di). Each column of Di represents a basis

vector for the image set Xi. We use the convex `1 formulation of the
Lasso as the cost function [3]

min
αi,Di

( 1
ni

ni

∑
j=1

1
2
||x j−Diαi||22 +λ ||αi||1

)
. (1)

Sparse dictionaries Di of various sizes for each of the training set are
learned from (1).

We start from the smallest size dictionary with pi atoms per gallery
set. A sparse dictionary with pq atoms is learned for the query (probe)
image set as well. Let DG be the set of learned dictionaries for the gallery
image sets and Dq be the dictionary for the query image set. Each dictio-
nary atom in DG inherits a label from its parent image set whereas a test
label t is assigned to each atom in Dq. Let LG be the labels of the gallery
image sets and Lq be the labels for the query image set. We append dic-
tionaries in an array Ds = [DG|Dq] and the labels as well Ls = [LG|Lq].

As a similarity measure, we compute the sparse coefficients required
to represent a particular dictionary atom as a linear combination of the
remaining atoms [1] in Ds. We take one atom di out of Ds, replace it by
zeros, and represent di as a sparse linear combination of the remaining
atoms. We use a fast implementation of LARS to find the sparse coding
coefficients αi of di computed as

min
αi
||di−Dsαi||22 s.t. ||αi||1 ≤ λ . (2)

We append all αi as columns in a similarity matrix S = {αi}
P+pq
i=1 .

Considering each dictionary atom in Ds as a node in a fully connected
graph G, the sparse linear coefficients in S are the edge weights connect-
ing any two nodes in G. Thus the similarity matrix S forms an adjacency
matrix for G, which is a directed graph. To form a positive weight undi-
rected graph, the modified adjacency matrix is computed as A = |S|+ |St |,
where | · | stands for absolute value. In order to apply spectral cluster-
ing [4] on A, we first compute the degree matrix D(i, j) = ∑

P+pq
i=1 A(i, j) if

i = j and D(i, j) = 0 if i 6= j. Using D and A, we compute un-normalized
graph Laplacian matrix L = D−A and then the normalized Laplacian [6]
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Figure 1: Block diagram of the Hierarchical Sparse Spectral Clustering
(HSSC) algorithm.

Lw = D−
1
2 LD−

1
2 . To cut the graph into two balanced partitions, we com-

pute the eigen vectors of Lw. Using the sign of the elements of the second
eigenvector we divide the set of all dictionary atoms into two partitions.

We recursively perform binary partitioning of the graph G until each
partition is identified as a decisive cluster which may contain atoms from
only one gallery set along with query atoms (critical cluster), only query
atoms (non-critical cluster) or zero query atom and one or more gallery
atoms (non-critical cluster). For each gallery set, we count the number
of atoms in all critical clusters and the corresponding number of query
atoms in those clusters as well. The product of both counts represents a
similarity score of the query set with that particular gallery set. Based on
the distribution of query atoms in the critical clusters, a confidence score
is also defined. If the confidence is high, the algorithm stops and a label
is predicted for the query set based on the maximum similarity score. If
the confidence is low, the full process is repeated with an increased dic-
tionary size. If confidence remains low for consecutive dictionary sizes,
however the predicted query label remains consistent, that label will soon
accumulate high confidence and the algorithm will stop. If confidence
remains low over a number of dictionary sizes and the predicted label is
inconsistent, the algorithm will stop after executing the maximum number
of iterations and the the final label will be predicted as the label with the
maximum mode over all iterations. This may occur in the case of difficult
matches and the predicted label confidence will remain low.

Experiments are performed on the Honda/UCSD [2] and CMU Mobo
data [5] for face recognition based on image sets. Comparison with exist-
ing techniques shows the efficacy of the proposed algorithm. We also test
robustness to outliers by mixing an increasing number of imposter images
in the probe set. The proposed algorithm demonstrates significant robust-
ness by achieving 100% recognition rate on the Honda database in the
presence of up to 11 imposters selected randomly from a random gallery
set and mixed with the probe sets.
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