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Detecting samples of unknown classes is a key task for active learning [1]
and one-class classification (OCC) [2]. Starting from a set of only pos-
itive training samples, we want to estimate a soft membership score for
every new test sample. Applying OCC methods is especially beneficial
in situations where either negative data is difficult to model with given
samples or where negative samples are hard to obtain.

We present an information theoretic framework for OCC, which al-
lows for deriving several new novelty scores. With these scores, we are
able to rank samples according to their novelty and to detect outliers not
belonging to a learnt data distribution. Our new framework sheds light
on OCC from a completely different theoretical perspective. The key
idea of our approach is to measure how strongly a new test sample would
influence the current model if it was used for training. This is carried
out in a probabilistic manner using Jensen-Shannon divergence and the
Gaussian process (GP) regression framework. An overview of our pre-
sented approach, which is based on mutual information (MI) and diver-
gence measures of information theory, can be seen in Figure 2. Although
our formulation is strongly related to active learning [1], we only con-
sider OCC [2] in the paper. In the following, we assume a given training
set X = {x(1)7,.,7x(N)} with labels y = 1 = (1,...,1)T and estimate a
membership score of a test sample x*. We score the sample based on the
resulting model change after treating it as an additional training sample.

To evaluate the change of the model, we once assume that x* belongs
to the target class (y* = 1) and once assume the opposite (y* = —1). Since
we have no precise knowledge about the correct label of new samples, we
model the assumed label y* € {1, —1} as a random variable. For reasons
explained in the paper, we approximate the change of the whole model
by relying on a neighborhood of infinite small size and only taking the
new sample itself into account. Therefore, we introduce a second random
variable Y* € {1, —1} to evaluate the model on x* after the model update,
i.e., the variable Y* is the reclassification result of x*. The dependencies
between the assumed label y* and the reclassification result Y* can be
measured using the conditional MI:

I(r*,y" | D*) =H(Y" | D*) —H(Y" [ y*, D) (M
that depends on the available data D* = (X,y,x*), which contains the
training set as well as the new test sample x*. A low conditional entropy
H(Y* | y*,D*) indicates that the reclassification result Y* is almost cer-
tain given the assumed label y*. Since the reclassification of x* and thus
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Figure 1: Visualization of our divergence approach. While both label
assumptions y* € {1,—1} of a possible outlier can be verified by reclas-
sification using the model additionally trained with the test sample (blue
curve), the assumption y* = —1 will lead to a weak reclassification of a
test sample stemming from the target class. Our approach exploits this
difference. Classification uncertainty is visualised by shaded areas.
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Figure 2: Outline of our approach based on mutual information.

the value of Y* heavily depends on the training data, one achieves a low
conditional entropy if the test sample x* is far away from the training
samples and the reclassification is mainly influenced by the choice of y*.
Summing up, a low conditional MI is induced by a strong membership to
the target class and vice versa. The conditional MI of Eq. 1 turns out to
be equal to the Jensen-Shannon (JS) divergence [3]:

[(Y*,y" |D*) =Djs (p1]lp-1) )
= m-Dgr (p1|/m) + (1 —7)-Dgr (p—1|jm) , (3)

where Dkp(+||-) is the Kullback-Leibler (KL) divergence, m = & -p; +
(1 —m)-p_ the mixture of the two conditional probability distributions
p1 =pY* |y =1,D*)and p_; = p(Y* | y* = —1,D*), and 7 the prior
probability: © =p(y* = 1|D*). Therefore, we propose using the negative
JS divergence as an OCC score. For the computation, we only need the
parameter 7 as well as conditional probability distributions py, and p_j.
In this paper, we propose using posterior probabilities of a GP.

In the case of GP regression, continuous outputs y. are assumed to
be generated according to y.(x) = f(x) + €, where f is a latent function
and € is a noise term. Following a Bayesian framework, output values of
unknown samples x* are predicted in a probabilistic fashion by marginal-
ising over latent functions f. Using assumptions mentioned in the paper,
the predictive output y; for a new sample x* given data D* is normally
distributed as well with moments u, and 6*2 given in closed form. We
compute probabilities 7 = p(y* = 1 | D*) based on these moments via:

* * * * 1 1 7.“’*

m=p(y* =1|D*) =p(y >0|D )z—zerf(\/ﬁ> @
where erf(-) is the error function. We also need to compute probabilities
of the conditional distributions p; and p_; in a similar vein to Eq. (4).
The conditional probabilities will arise from a GP model learnt with N + 1
training samples by treating the current test sample x* and its assumed la-
bel y* as training data as well. The assumption y* = 1 is still an OCC
setting whereas the assumption y* = —1 leads to a highly imbalanced
binary classification scenario. The difference between the behaviour of
samples stemming from the target class and outliers is visualised in Fig-
ure 1 using a solid line for the predictive mean and shaded areas for the
predictive variance of the GP model.

Evaluations on machine learning and image categorization datasets
are described in the paper. Our conclusion is that we reach state-of-the-
art performance while offering a completely new access to the challenging
problem of one-class classification.
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