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Figure 1: CCA on natural images: (left) Filters learnt on pairs of natural images
related by a (left) 90 degree rotation and (right) 45 degree rotation.

We present an unsupervised and sampling-free approach to learn the
correspondence relations between pairs of cameras in closed form em-
ploying a linear model known as Canonical Correlation Analysis (CCA).
The only assumption we make is that the relative orientation between the
cameras involved is fixed. In a two stage algorithm, we first learn the
inter-image transformation based on CCA. This analysis usually has to
be done in a multi-scale framework, as applying CCA directly to full res-
olution images may be computationally prohibitive. In the second stage
we employ the learnt transformation which is given only implicitly and
predict for a given pixel in a first view its corresponding region within a
second view. We denote these regions as correspondence prior.

CCA has been introduced by Hotelling [2] as a method of analyzing
the relations between two sets of variates and can be applied in closed
form. Consider two random vectors x and y where x 2 RN and y 2 RM .
The goal of CCA is to find basis vectors for which the correlation between
x and y when projected onto the basis vectors are mutually maximized
[3]. In the case of a single pair of basis vectors u 2 RN ,v 2 RM the
projections are given as a = u

T

x and b= v

T

y. Assuming E[x] =E[y] = 0,
the correlation r between a and b can be written as:
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Note that (2) does not depend on the actual scaling of u or v, therefore in
the case of a single pair of basis vectors CCA can formally be defined as
solving the following optimization problem:
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It can be shown that (3) can be cast as a generalized eigenproblem with
K = min(N,M) solutions, defining two sets of basis vectors {u
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} and
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} with k = 1, ..,K [1]. The projections a
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Assuming that N = M, and arranging the basis vectors column wise such
that U = {u

k

} and V = {v

k

} one can show that U, and V define a basis
for the random vectors x and y, respectively [1]. Figure 1 shows filters
learned with CCA on pairs of natural images.

Given a binocular image stream, we learn the inter-image transforma-
tion by applying CCA on data matrices X,Y 2 RT⇥N , where each row in
X and Y correspond to a subsampled version of the original image, re-
spectively. We whiten the two data matrices before applying CCA such
that C

xx

= C

yy

= I holds. Then the two constraints within (3) relax to
u

T

u= v

T

v= 1 and the sets of basis vectors determined by CCA will form
orthonormal bases which allows us to perform the prediction in closed
form. We whiten the data matrices using PCA from which we obtain ma-
trices W

x

, W

y

2 RN⇥N containing the PCA basis vectors for our given
data in X, and Y. Given that CCA is able to perfectly learn the transfor-
mation then the correlation between a pair of corresponding patches (x,y)
will be maximum iff
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Figure 2: Visual description of how correspondence priors are generated, once
the transformation between two views has been learnt via CCA.

This implies that we can predict y from x and vice versa which is the same
as applying the learnt transformation to x or y. Solving (4) for x we can
predict x from y as:
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Correspondence priors are then generated as follows: Let (x,y) be the
spatial coordinates of a pixel in I

0
1, where the superscript 0 denotes the

original resolution. Next, determine the pixels’ coordinates (u,v) within
the low resolution, and generate a binary image of the same size as the
low resolution where the pixel at (u,v) is set to 1 (step 1 in Fig. 2). Using
(5) we apply the learned transformation to the binary image and obtain
the predicted image. When there is a one-to-one pixel correspondence
and the transformation has perfectly been determined, the predicted im-
age will be binary again where a single pixel is set to 1 marking the corre-
spondence. However, due to noise one typically obtains predictions that
encode regions of high probability containing the correspondence (step 2
in Fig. 2). Interpreting the predicted images as an empirical bivariate cor-
respondence distribution over the spatial image coordinates we encode
the prediction by means of a 2⇥ 2 covariance matrix C

p

. Based on an
eigenvalue analysis of C

p

, we consider that a correspondence exists if
both eigenvalues of C

p

are small. Finally, the correspondence prior to the
pixel at (x,y) 2 I

0
1 in the second view is given as the covariance error el-

lipse from C

p

projected onto I

0
2 (step 3 in Fig. 2). Figure 3 shows several

correspondence priors and correspondence maps for different real world
setups.
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Figure 3: Correspondence priors and maps for real world setups. For selected
pixels within the first view (first column), regions of high probability containing
the true corresponding pixel in second view (middle column) are determined. (right
column) Correspondence maps. Regions colored in shades of purple have a high
probability of not being visible in the first view.


