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Abstract

This paper presents the first performance evaluation of local shape descriptors in
probabilistic volumetric models (PVM) that are learned from multi-view aerial imagery
of large scale urban scenes. The PVM offers a dense solution to the multi-view stereo
problem, handling in a probabilistic manner the ambiguities caused by highly reflective
surfaces, varying illumination conditions, registration errors, and sensor noise. A GPU-
based octree implementation guarantees scalability of the PVM to large urban models,
encouraging its application to higher level 3-d computer vision tasks. Furthermore, local
descriptors form the basis of many shape-based applications and their performance has
been studied extensively for images-based applications. Local descriptors have also been
popular for 3-d shape understanding, but most 3-d descriptors have been used within the
context of point clouds data collected with range sensors or polygonal meshes of CAD
models. This work presents an investigation of the performance of several local shape de-
scriptors in the PVM, which is learned from image data and where surfaces ambiguities
are common and explicitly modeled. Descriptors are evaluated on accuracy for object
classification using Bag-of-Words models. This evaluation forms a step towards the char-
acterization of a new 3-d probabilistic representation for 3-d scene understanding.

1 Introduction
Understanding the three-dimensional world from images is a long standing goal in computer
vision, with numerous applications in the areas of robotics, autonomous navigation, city
mapping and surveillance. Multi-view stereo can be thought of as the initial step towards the
goal of 3-d scene understanding, and it has been widely studied by the scientific community.
Surface estimation for isolated and non-occluded objects has received much attention, and
the quality of the reconstruction can be competitive with the accuracy of laser scanners [35].
Few of the available methods can perform image-based 3-d modeling of outdoor, crowded,
large scale scenes [5, 10], where accurate modeling is difficult due to severe occlusion, vary-
ing illumination conditions, the presence of highly reflective surfaces and sensor errors. In
this realm, probabilistic volumetric methods offer a dense representation for the solution of
the multi-view stereo problem, modeling explicitly the scene’s uncertainty. This new rep-
resentation of surface geometry [5, 26] has been used in the areas of 2-d change detection
[24, 26], and more recently it has shown promising results in the areas of 3-d object classifi-
cation [29].
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Figure 1: Framework overview. First, an input image and camera sequence are used to learn the PVM.
Then, surface normals and shape descriptors are computed at highly likely surface locations. Finally, a
Bag of Words model is used to learn and classify 5 object categories.

Inspired by the growing number of applications of the probabilistic volumetric model
(PVM) to 3-d scene modeling and understanding, this work aims to provide the first evalua-
tion of the performance of several local shape descriptors extracted from the PVM in terms
of accuracy for object classification. Descriptors based on local histograms are of particular
interest as they are the most popular and most successful for many image indexing appli-
cations. While the performance of many 3-d shape descriptors has been studied in point
cloud data (from range sensors, or computer generated meshes) it is unclear that their de-
scriptiveness and robustness to noise successfully extends to the diffuse surface probability
distributions of the PVM. Surfaces can be poorly localized due to the presence of highly
reflective materials, large regions of constant intensity and challenging illumination condi-
tions in the input image data. This work takes a step towards the characterization of the
PVM as a new representation for 3-d scene understanding that provides a dense continuous
representation of scene geometry despite of all these sources of ambiguity.

This papers evaluates Spin Images (SI) [14], 3-d Shape Contexts (SC) [9, 17] , the SHOT
[41] and the FPFH [32] descriptors. For evaluation, this paper proposes a framework that
starts by learning the probabilistic models for 17 urban scenes from publicly available aerial
imagery [29]. The probabilistic models are learned using an octree-GPU-based implemen-
tation [21]. After learning the PVM, surface normals are computed by convolving three-
dimensional Gaussian derivative kernels with the volumetric surface probabilities. Surface
normals and their locations are used to compute the local 3-d descriptors at highly-probable
surface elements. Finally, the descriptors are used to learn Bag of Words models for five
object categories: planes, cars, houses, buildings and parking lots. During learning and
categorization, the objects are manually segmented and labeled using the bounding boxes
provided in [29]. The Bag of Words framework follows common practices, where a com-
mon vocabulary is learned for all categories using k-means clustering. Naive Bayes, SVM
and Nearest Neighbors classifiers are compared during the classification stage. To ensure
robustness of the evaluation, the results are reported for various vocabulary sizes, descriptor
parameters and classifiers across multiple splits of the train/test data. It is emphasized that
the key contribution of this work is on the evaluation of various 3-d features and not on novel
approaches to classification. A special effort is made to report all parameters used through
out this work, such that this evaluation can provide precise guidance to future works using
the PVM. An overview of the proposed pipeline is presented in Fig. 1.
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2 Prior Work
2.1 3-d Object Description
There exist many different approaches to 3-d shape analysis. For a review, the reader is re-
ferred to [40]. In the rigid shape retrieval community, global descriptors have been studied
extensively. Global features characterize the overall shape of a 3-d model; examples are: fea-
tures based on volume and area [46], reflective symmetry descriptors [15], and 3-d Zernike
invariants [23] among others. In contrast, local feature-based methods take into account the
information in the neighborhood around points on the surface. There are a large number of
local descriptors for 3-d shapes, including shape contexts [9, 17], local patches [22], spin
images [14], tensors [20], heat kernels [27], 3-d SURF [16], 3-d SIFT [3, 8, 33] and the
SHOT descriptor [41]. Although early works in the area generally describe the 3-d surface
around a point by encoding in a local coordinate system the geometric properties computed
from the local support [4, 38], more recent works have favored histogram based descriptors
[9, 14, 41] inspired by the success of descriptors such as HOG [7] and SIFT [19] for 2-d
image-based applications. This evaluation focuses on distribution based descriptors as they
have shown robustness to clutter, noise, and missing data [9, 11, 16]; characteristics that
frequently occur in image-based reconstructions of outdoor urban scenes.

Several evaluations of local shape descriptors have been performed. For example, Heider
et al. [12] survey and evaluate several descriptors for shape matching tasks under changing
mesh quality, noise, and smoothing. The evaluated descriptors belong to two classes: de-
scriptors that locally sample a geometric property, e.g., curvature, normals; and descriptors
that locally fit a model, e.g., polynomials. Shilane and Funkhouser [36] evaluate the distinc-
tive characteristics of local descriptors for similarity retrieval applications. Evaluations of
descriptors using Bag of Words models have been performed by Bronstein et al. [2], where
the Heat Kernel Signatures are used as the local shape descriptors. Similarly, Tang and Godil
use Bag of Words models to evaluate the best performing descriptors reported in [12].

Most of the works mentioned have focused on objects that are acquired in controlled
settings using 3-d scanners or CAD models. Fewer works have focused on image-based
reconstructions from real life images. Recently, Knopp et al. [16] have shown promising re-
sults for combined segmentation and recognition. A related study on the PVM is the work in
[29], where the authors propose local descriptors based on the PCA analysis and Taylor series
expansion of the appearance of local neighborhoods in the PVM. These descriptors are used
in Bag of Words Models for object categorization tasks and achieve adequate classification
rates when using appearance information. However, they significantly under-perform when
using occupancy information alone. This paper uses the data-set and manually segmented
bounding boxes as provided in [29], to investigate whether robust, distribution-based de-
scriptors can successfully learn the invariant shape information in the PVM without regard
to the associated appearance information.

2.2 Probabilistic Volumetric Modeling
Reconstructing 3-d surfaces from 2-d image projections is ill-posed due to the existence of
multiple photo-consistent solutions (areas of constant appearance), the presence of sensor
noise, camera calibration errors, violations of a surface reflectance model, and occlusions.
Pollard and Mundy [26] propose a volumetric Bayesian framework that is robust to large
variations in appearance from a video sequence. However, the model is implemented in
a regular grid and it does not scale up to large scenes due to its cubic space complexity.
Crispell et al. [5] address these limitations with a continuous formulation of Pollard and
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Figure 2: (a) Plots of occlusion density α and vis as a ray travels through volume. α peaks (and
visibility drops) as the ray pierces the two outside surfaces of the (almost) hollow yellow cube. (b) A
parametrization of the ray into intervals according to octree cell intersections.

Mundy’s method implemented in an octree. Moreover, a recent GPU implementation [21]
is capable of learning large, high resolution volumetric models efficiently where one pass of
the online update can be processed at approximately one frame per second for HD resolution.

In Crispell’s work, surface probabilities are closely related to a scalar function termed
the occlusion density α(x) that measures the likelihood that a point occludes points behind
it along any line of sight, assuming that the point itself is not occluded. Points along a ray
are parametrized by a distance s from q (e.g., camera center) as x(s) = q+ sr s ≥ 0. The
visibility probability of a point x(s) is related to the integration of occlusion density as given
by the following equation (see [5] for derivation):

vis(s) = e−
∫ s

0 α(t)dt . (1)

Intuitively, the visibility along a ray drops significantly when it hits a point of high occlusion,
i.e., a surface. An example of this relationship is shown in Fig. 2a.

Learning the occlusion density from images follows an online Bayesian learning algo-
rithm similar to that proposed by Pollard and Mundy [26], which is given by:

P(X ∈ S|IN+1) = PN(X ∈ S)
PN(IN+1|X ∈ S)

PN(IN+1)
, (2)

where the probability of a voxel being part of a surface, P(X ∈ S), is updated with the
intensity, I, observed in the pixel associated with a corresponding projection ray. P(X ∈ S)
increases if the appearance model at the voxel explains I better that any other voxel along
the ray. The appearance at a voxel is modeled with a Gaussian mixture distribution.

The definitions proposed by Crispell et al. allow for a generalization of (2), where instead
of reasoning about discrete voxels, the update equations account for the exact geometry
of ray/voxel intersection, i.e., the length of intersection segment. Fig. 2b illustrates the
parametrization of a ray into segment lengths for the octree discretization.

3 Evaluation Framework
3.1 Shape Descriptors
Spin Images: Spin-images [14] are one of the best known 3-d shape descriptors. The neigh-
borhood of a point is described by fitting a tangent plane to the surface at the point and
accumulating 2-d histograms of points falling within the support region. The dimension of
the descriptor is determined by the number of bins in each side of the spin image. The sup-
port radius is determined by the number of bins and the bin size, where bin size affects the
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descriptiveness of the spin image. Finally, since spin images describe the relative position of
points, they are invariant to rigid transformations.

3-d Shape Contexts: Frome et al. [9] proposed a 3-d extension of the 2-d shape context
[1]. The neighborhood of an oriented point is described by centering a sphere at that point,
with the north pole aligned with the surface normal, and dividing the support region into
bins with boundaries along the azimuth, elevation and radial dimensions. The subdivisions
are logarithmically spaced along the radial dimension and equally along the other two. The
dimension of the descriptor is determined by the number of subdivisions. Each bin accu-
mulates a weighted count of points. Finally, there is a degree of freedom in the azimuth
direction for 3-d shape contexts, therefore the the local reference frame is not unique.

SHOT: Signatures of Histograms of OrienTations (SHOT) [41] is a recently proposed de-
scriptor that defines an invariant local reference frame to describe the local surface character-
istics around a point and uses a spherical grid around a point to accumulate local topological
measurements. In the SHOT descriptor, the spherical grid is coarsely divided along the ra-
dial, azimuth and elevation dimensions. Each bin contains a local histogram, formed by
accumulating point counts into bins according to the cosine of the relative angle between the
reference normal and the normals at points within the support of the local bin. The dimen-
sion of the descriptor is determined by the number of bins in the local histograms and the
number of spatial subdivisions in the spherical grid.

Fast Point Feature Histogram (FPFH): With real-time applications in robotics in mind,
the FPFH descriptor [32] is proposed to significantly reduce computation time of the original
Point Feature Histogram [31]. In the PFH, a sphere with a given support radius is centered
around each point p. For every pair of points (pi, p j) and their corresponding surface normals
(ni,n j), with (i 6= j), within the support sphere of p, a Darboux frame coordinate system at
pi is defined {uvw : u = ni,v = (p j− pi)× u,w = u× v} and three angular measurements
are accumulated: β = v · n j, φ = (u · v))/||v|| and θ = arctan(w · n j,u · n j). During FPFH
computation not all neighbors are interconnected, instead only the query point is connected
to its neighbors. Finally, the bins of the histogram are decorrelated and concatenated into a
low dimension feature vector.

3.2 Bag of Words Model
Bag of Words (BoW) models have their origins in texture recognition [42] and text cate-
gorization [13]. Their application to categorization of visual data has been studied exten-
sively [6, 37]. The independence assumptions inherent to bag-of-features representation
make learning models for few object categories a simple task, hence its popularity. The
method has also been popular for 3-d representations [2, 18, 39]. Bag of words models
are simple, efficient, general and intrinsically invariant, and through its use, this evaluation
seeks to provide a baseline for future methods to compare against. The implementation of
BoW used in this paper follows common practices. Once all features have been extracted
(to be explained in subsequent section) and computed, a common vocabulary for all ob-
ject categories is learned using k-means clustering. After a common vocabulary has been
learned, objects are represented by a feature vector corresponding to the vector quantization
of its 3-d shape descriptors. Note that only one type of descriptor is used per experiment
and they are not intermixed. After the quantization step, the categorization problem is re-
duced to that of multi-class supervised learning. This paper reports results for three common
classifiers, namely nearest neighbor (NN) classifier, multinomial naive Bayes classifier and
support Support Vector Machines (SVM).
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(a) (b) (c)

Figure 3: Example of the evaluation data-set. An example of a frame and a representative object for
three of the categories: (a) building, (b) plane and (c) house. To facilitate visualization, the top 50% of
the octree cell locations are shown with the corresponding mean intensity.

4 Implementation Details
Data: For this evaluation 17 probabilistic scenes were used, where a scene corresponds to
a site for which a video was collected from a helicopter following a ring-shaped trajectory.
All aerial videos were collected near Providence, RI, USA. The data represents a variety of
urban and semi-urban sites, including residential neighborhoods, industrial sites, downtown,
apartment, hotel and hospital buildings, parking lots, university campus buildings and fields
among others. The helicopter flew at an average height of between 300 and 450 meters for
all sites, therefore sampling rate is similar for all objects. An approximate resolution of 30
cm/pixel is obtained in the imagery and matched by having the highest resolution voxels span
30 cm on a side in the 3-d models. All camera matrices were computed using the VisualSFM
[43, 44, 45] software. To carryout multi-class object learning/classification, this paper uses
the bounding boxes and corresponding class labels provided in [29]. A total of 301 objects
were labeled corresponding to: 32 planes, 83 cars, 106 residential houses (1-3 story-houses),
44 buildings (large city buildings) and 36 parking lot lanes. Fig. 3 shows an example of an
input frame and a representative object for the building, plane and house categories. All data
is publicly available, for more details see [28, 29].
Normal Estimation: Surface normals are computed using the gradient of the occlusion den-
sity ∇α , which is computed by convolving first order derivatives of the 3-d Gaussian kernel
with the volume. Three oriented kernels, i.e., Gx,Gy,Gz, were used and their responses in-
terpolated into an estimate of ∇α . To estimate the direction of the surface normals from
the gradient information it is necessary to resolve the ambiguity of inward-pointing vs. out-
ward pointing normal vectors. Surface normals are oriented towards the outside of objects
by determining the hemisphere that yields the maximum visibility. A visibility measure
vis_score(x) is computed as the sum of the visibilities of that cell along 12 sample directions
from a unit sphere (dodecahedron vertices).
Location Sampling: Cells lying on object surfaces should correspond to areas of high oc-
clusion density α(x) and high visibility vis_score(x). Therefore, for each object, the shape
descriptors are computed for the top 10% of the cells that maximize the following surface
measure: s(x) = α(x)× vis_score(x)×‖∇α(x)‖, where ‖∇α(x)‖ increases robustness to
outliers. This filtering criteria avoids computation of the descriptors at locations external or
internal to object surfaces.
Parameters of Shape Descriptors: This work uses the open source implementations of
the descriptors available at the Point Cloud Library [30]. The most important parameters
correspond to the number of bins and the bin sizes. The number of bins was chosen as to best
fit the recommended values in the original formulations and the PCL implementation. The
number of bins determines the size of the descriptor and has an effect on storage requirements
and dimensionality of the classification problem. All parameter values are reported in Table
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1. For a fixed number of bins, the support radius of the descriptor determines the bin size
and affects descriptiveness of the feature vector. This evaluation reports results for various
support radii: 10, 20, 30 and 45 measured in the resolution of the finest cell of the octree.

Table 1: Input parameter for the different shape descriptors.

Descriptor Type Dimensions Number of bins Other

Spin Image 153 width=8 min support cosine = 0.5
min num of neighbors =2

3-d Shape Context 1980 azimuth=12, elevation = 11 point density = radius/5
radial=15 minimal radius =radius/10

SHOT 320 azimuth=8, elevation =2 - - - -radial=2, cosθi=10
FPFH 33 nbinsβ = 11, nbinsφ = 11 - - - -

nbinsθ = 11

K-Means Clustering: The algorithm proposed by Sculley [34] was used as it runs several
orders of magnitude faster than the traditional batch algorithm for a large number of samples.
The algorithm requires as input parameters the number of mini batches, set to 100 ·K, where
K ∈ {20,50,100,200,500} is the number of clusters. The maximum number of iterations
was set to 500, the initialization of the means was random, and the algorithm was run 10
times with a different initialization of the clusters. The solution with the smallest sum of
distances between the samples and the centers was chosen as the solution.
Classifiers: For all classifiers, an open source implementation [25] was used. For NN-
classifier the weighting scheme of the neighbors was uniform. For naive Bayes all object cat-
egories were considered equally likely and to avoid probabilities of zero, Laplace smoothing
was used. The SVM was non-linear with the radial basis function (RBF) used as the kernel
function. The error weighting constant and RBF parameter were set to 100 and 10 respec-
tively. The parameters were chosen heuristically. Feature vectors were normalized using the
L1 norm in the case of the NN and SVM classifiers. This is not necessary in the case of the
Naive Bayes classifier, as feature likelihoods correspond to relative frequencies. To achieve
multi-class classification with SVM, the one-vs-one approach was used.
Evaluation: For robustness all experiments were conducted over 5 random splits of the data.
Classification performance is measured using the total recall and average confusion matrix
across all validation sets.

5 Experiments and Results
Effects of varying the support radius (rsupp) and the number of clusters (K): Figure
4 presents the classification performance for the different descriptors as a function of K.
For each descriptor and support radius the total recall across all validation sets is reported.
All descriptors are classified using SVM. Few observations can be made from Fig. 4. In
general, classification performance increases as K is increases. However, not a significant
increase was observed after K = 100. Regarding the size of the support radius, the effects are
different for each descriptor. In the case of the FPFH and the SI descriptors, the performance
was almost identical for all tested values. In the case of the SHOT descriptor performance
improved from rsupp = 10 to rsupp = 30, for rsupp = 45 the total recall was similar to that of
r = 30. In the case of SC, the performance increased as the support radius increased, with
rsupp = 45 achieving the best performance. The error bars in the figure refer to the best and
the worst performance across the validation trials. Little variability is observed for FPFH
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Figure 4: Total recall across all object categories as a function of the number of clusters in the
vocabulary. Values 10, 20, 30, and 45 for the support radii are presented. From left to right the figures
correspond to the following descriptors: FPFH, SHOT, SI, SC.

Figure 5: Average confusion matrices (across trials) . Columns (left to right): FPFH, SHOT, SI, SC.
Rows (top to bottom): Nearest Neighbor, Bayes, SVM. In all cases rsupp = 30 and K = 500

and SI. The SHOT descriptor reveals the largest variation. In Fig. 4 the FPFH descriptor
demonstrates the best performance across different values of K and rsupp.

Effects of varying the classifier, evaluating across different categories: Figure 5 presents
the confusion matrices for all descriptors (FPFP, SHOT, SI, SC - column wise) and all classi-
fiers (NN, Bayes, SVM - row wise). The number of means is fixed at K = 500 and the support
radius at rsupp = 30. The SVM classifier exhibits better performance across all different fea-
tures. In the case of FPFH, naive Bayes and SVM achieve similar classification accuracy
However, NN-classifier exhibits significantly lower performance. The performance of the
SHOT descriptor is similar for all classifiers. For Spin Images, naive Bayes has the lowest
accuracy, particularly at recognizing buildings. In the case of Shape Contexts, all three clas-
sifiers exhibit acceptable performance, but SVM does a better job at differentiating houses
from buildings. From the confusion matrices it is possible to notice that in general, houses
and buildings are often confused. The SVM classifier appears to better differentiate these
two categories.

Figure 6 presents the total recall across validation sets, as well as, the maximum and
minimum recall achieved in a trial. In these plots K = 500 and rsupp = 30. It is apparent that
the building category is not recognized well when using Spin Images. Naive Bayes does not
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Figure 6: Total recall for all object categories using different classifiers. In all cases, rsupp = 30
and K = 500. From left to right: FPFH, SHOT, SI, SC. Markers correspond to the total recall in all
validation trials. Error bars span the maximum and minimum recall attained by a trial.
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Figure 7: Average running time per object for different descriptors. (a) rsupp = 10, (b) rsupp = 45.

model the building category very well. In the case of Shape Contexts, naive Bayes classifies
all buildings as houses for one of the validation trials. It can also be observed that the Nearest
Neighbor classifier performs poorly with the FPFH descriptor. The variability across trials
depends on the type of descriptor, the category in question, and the classifiers used.
Storage and time complexity: The probabilistic models used in this work contain high
resolution occupancy information. Although only the top 10% of the available locations
are sampled, for large objects such as buildings several hundred thousand descriptors are
computed. During the experiments, the vast majority of the time was spent computing the
shape descriptors. For all objects, the FPFH descriptor was several orders of magnitude
faster to compute than the Spin Images and the Shape Contexts. Fig. 7 presents the average
time spent computing the descriptors per object. In Fig. 7(a) rsupp = 10 and in Fig. 7(b) for
rsupp = 45. Time is presented in logarithmic scale as the differences were significant between
descriptors. These results are reported for a computer using two 2.93 GHz, Quad-Core Intel
Xeon processors. For the FPFH and the SHOT descriptors multi-threaded implementations
were available and 8 cores were used. Note that running times of parallel tasks are affected
by the availability of cores, and the reported times include these waiting times.

The storage requirement varied significantly across descriptors. Table 1 reports the length
of each descriptor. During traditional k-means clustering algorithm, all training descriptors
are loaded into memory. For these experiments, approximately 2 million descriptors are used
during training. The large dimensionality of 3-d Shape Contexts posed storage challenges.

6 Conclusion and Further Work
This paper presented the first evaluation of local shape descriptors in probabilistic volumet-
ric scenes. The evaluation focused on histogram-based descriptors. FPFH [32], SHOT [41],
Spin Images [14] and 3-d Shape Contexts [9] were evaluated for use in object categorization
using Bag of Words models. Under the different scenarios, the FPFH obtained high recall
while having the advantage of being compact and fast to compute. Spin Images underper-
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formed when recognizing buildings. The SVM classifier was the more effective classifier.
The results indicate that distribution-based descriptors effectively extract salient characteris-
tics of the shape information in the PVM for object categorization. This work provides guid-
ance on the selection of descriptors and parameters for characterization of the PVM, making
a fundamental step on the understanding of the shape information in the PVM. However, it
is recognized that the presented evaluation is not exhaustive and it would be interesting to
include more descriptors and more object categories. It would also be informative to eval-
uate the effects of dimensionality compression and sampling on classification performance.
Finally, this evaluation can be extended to other vision tasks in the PVM, such as registration.
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