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Abstract

This paper provides evidence that about half of all the regions in segmented images
can be classified as one a few simple shapes. Using three segmentation algorithms, three
different image databases, and two shape descriptors, we empirically show that shapes
such as triangles, squares, and circles are observed, up to an affine transform and at a
much higher rate than random shapes. This result has potential value in applications such
as scene understanding, visual object classification, and matching because qualitative
shapes can be used as features. We show an application in scene categorisation based on
what might be called ‘bag of shapes’ .

1 Introduction
Shape has been well studied in many disciplines, yet to the best of our knowledge the ques-
tion as to whether there is a set of elementary planar shapes that appear commonly in the
world around us has never been asked. If such a set exists, then the elemental shapes could
play a similar role in shape analysis as the primary colours do in colour analysis. This paper
uses a fully unsupervised framework to find out the ‘primary shapes’ in image segmentation-
s. It conclude that the most common of those found are familiar enough to be named: shapes
such as triangles, squares and circles (more exactly, these shapes up to affine transforma-
tion). We propose to use qualitative shapes as features in future applications. For example,
hierarchies of qualitative shape can be used for cross-modal matching [5].

The literature studying planar shape covers many areas. We focus on just those areas of
direct relevance to this paper — Image Processing and Computer vision — which alone is
large and growing larger. Morphology is a standard topic in lecture room texts, such as [10],
and decomposing shapes into parts is a future interest of ours. Here though, we are more
interested in describing planar shapes for classification. Boundary descriptors permit a scale
based representation [22], Fourier descriptors are a common example [25, 28, 31]. Shape
skeletons are the dual of shape boundary, and also have been used as a descriptor [14, 29, 33];
modern techniques reduce noise sensitivity [27]. Region based descriptors are robust to noise
when compared with either boundary or skeletal descriptors. Typical descriptors include
geometric moments such as Hu [11], Zernike [13], and Chebyshev [26]. Alternative region
based descriptors also exist, such as [8]. Shape is put to use in many Computer Vision tasks
not limited to matching [32], classification [9, 18, 35], and retrieval [1, 3, 6].

It is not possible, nor is it our purpose, to review the extensive shape related literature
here; the above is a small but representative sample. What is important to this paper is that
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Figure 1: Segmented regions classified by prime shapes obtained from MIT database (see
section 2.5). Example: the segmented torso of a man is classified as an ellipse/circle.

none of the literature we know of asks as we do: “ is there a set of shapes commonly present
in natural images?” Intuitively we would expect such shapes to be simple, but most of the
existing literature — especially recent publications — use relatively complex silhouettes of
real objects (cups, horses, hands etc). This paper tests the proposition that simple (prime)
shapes exist in natural images — that they are part of ‘the signal’. Since this appears to
be a unique question, and since its affirmation or denial should not depend on details of
shape description etc., we curtail our review of the Computer Vision literature in favour of
motivating our work a little more.

Our proposition has its roots in Art, most particularly 20th century Western Art. Painters
such as Picasso (e.g. Seated Woman with Wrist Watch), Leger (e.g. Card Players), and
schools such as Italian Futurism, Tubism, and Orphism, depicted objects (and motions) as
being composed of just a few basic geometric forms: cones, cylinders, bricks and so on.
Additionally, it is very common for artists to make initial sketches using simple shapes to
layout a scene, as any book on drawing instruction will testify. Empirical evidence that
aligns with artistic intuition has existed since at least the 1970’s, when psychologists such as
Rosch [30] showed simple shapes (specifically triangles, squares, and circles) are easier for
humans to recall than other shapes. It is interesting to speculate that this may explain why
humans have words to describe these shapes, and it is interesting also that our experiments
show it is exactly these shapes that occur in natural images with a frequency which is well
above that expected by chance alone. In other words, this paper provides evidence that
simple shapes are integral to what might be called ‘the visual signal’. As Figure 1 shows, we
can classify image regions into qualitative shape that have been learned without supervision.
On the right-side of the figure also shows an example that how a noisy segmented region can
be classified into circle or ellipse.

2 Experimental Method

Our experiment is designed to find out whether common simple shapes objectively exist in
image segmentations. We wish to remove as much bias as we can, so supervised methods are
ruled out and we have been sure to use a range of segmentation methods, shape descriptors,
and databases. Importantly, we will not define simple shapes in advance, rather they should
be an emergent property based on image statistics. Our approach is to automatically cluster
regions that have been segmented from images, and compare these clusters with those created
from a database of randomly created images; there is no human interaction at all. Figure 2
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(a) (b)

Figure 2: (a) Experimental Framework (b) Regions produced by different segmentation
algorithms over different image databases.

gives a more detailed illustration of our experiment.
No matter how we configured our experiment, we concluded that simple shapes such

as triangles, squares, and circles (up to an affine transform) are the most common classes
of shape to emerge from natural images. However, the ratio of these shapes is not con-
stant across the databases, which leads to an immediate application in scene categorisation,
explained in Section 3.

2.1 Three Image Databases, and a Random Generator

Our experiments are based on three images databases, chosen because they offer a diverse
set of content. We also used a databases of shapes created at random. Typical images from
these database can be seen in Figure 2.

MIT Database is publicly available [12]. Designed for eye tracking experiments, the
database contains 1003 images, including street scenes, buildings, animals and natural land-
scapes etc. We randomly choose 200 images as training data, and 100 for test data.

Berkeley Segmentation Database (BSDS500) [19] is a well known, publicly available
data base often used for experiments in contour detection and image segmentation. It in-
cludes 500 pictures, most of them are natural images, but also includes faces and animals.
We randomly choose 200 images as training data, and 100 for test data.

Bath Nature Database has 50 pictures of outdoors; forest, field, seascapes etc, there are
few is any man-made objects. Most of the images in this database contain no obvious basic
shape that we (as humans) can perceive. Also, there is no obvious foreground or background.

Random Shapes. In addition to fixed databases we generate random shapes, one per
image, as in Figure 3. To create random shapes we developed the following algorithm: (i)
Create an N×N image of independent random numbers. (ii) Choose the central pixel to be
the current shape. (iii) Mask all pixels that form the outer border of the current 4-connected
shape, and add the masked pixel with the highest random number to the shape. (iv) continue
until the shape has the required number of pixels. The halting number is randomly drawn
from a uniform distribution over [100,600].
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Figure 3: Typical random shapes.

2.2 Three Segmentation Algorithms

To offset bias regarding any particular segmentation algorithm we used three; one very sim-
ple, one popular, one state of art. In each case any region that touched a picture boundary
or which contained less than 100 pixels was removed from further consideration. The first
was to remove any bias introduced by straight boundary edges, the second to remove noise
— needed primarily for thresholding. Typical segmentation output can be seen in Fig 2 (b).

Thresholding is perhaps the simplest methods for image segmentation. A grayscale, I
image maps to a binary image: b = I > τ , for threshold τ . Assuming gray values in [0,1],
we set τ = 1/2. We used 4-connected regions, both black and white, as shapes.

Maximally Stable Extremal Regions (MSER) are regions found by analysis of succes-
sive threshold images [20]. MSER yields a hierarchy of regions and we only use the regions
from the last two layers.

Berkeley Segmentation Engine(BSE) is based on the probability of boundary (Pb) maps
introduced by Arbelaez et al [2]. It is considered as one of the most successful segmentation
technique because it compares very well against human produced grounding truth using the
Berkeley Segmentation Dataset (BSDS-500).

2.3 Two Shape /Region Descriptors

There are many shape descriptors to choose from; we opted for Zernike moments [34] and
Chebyshev moments [23]. These moments operate over sets of points, so are useful for de-
scribing solid regions of the kind produced by typical image segmentation algorithms. They
are fast to compute, again useful when faced with many regions in an image segmentation.
They are invariant to rotation and robust to noise, and have been used for classification by
shape [17]. This paper presents results using Zernike moments only, almost identical re-
sults are obtained using Chebshev moments; these results are available in the supplementary
material.

2.3.1 A Whitening (Affine) Transform and Re-sampling

We normalise each region (shape) before computing its description. We apply a whitening
transform that brings the region into the unit disc, as follows. Let X = {xi} be points of a
region, with x̄ their centroid and C =ULUT their covariance. Then yi = L−1/2UT (xi− x̄) is
a whitening transform, which applies an affine transform to the shape by centering it at the
origin, rotating it to a canonical frame and differential scaling over each eigenaxis. This will
map any triangle into equilateral form, any rectangle into a square, and any ellipse into a
circle. The new shape will have a unit covariance in each eigendirection, so we scale by the
point most distant from the origin to map the shape into the unit disc.

Scaling into the unit disc changes the effective sample rate. To make sure that this plays
no role in moment computations, we resample the shapes into a 502 binary image.
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2.3.2 Zernike moments

Zernike moments [34] are constructed using a set of complex polynomials which form a
complete orthogonal basis set defined on the unit disk. They are parameterised by two in-
tegers; n ≥ 0, and m such that |m| ≤ n and n−|m| is even. In polar coordinates, (ρ,θ), the
(n,m)th Zernike basis function, Vnm(ρ,θ), defined over the unit disk is

Vnm(ρ,θ) = Rnm(ρ)exp( jmθ), ρ ≤ 1, (1)

in which j =
√
−1. The Zernike radial polynomials, Rnm(ρ), are defined as:

Rnm(ρ) =
(n−|m|)/2

∑
s=0

(−1)s× (n− s)!
s!((n+ |m|)/2− s)!((n−|m|)/2− s)!

ρ
n−2s (2)

For a binary image f (x,y), the mnth Zernike moment is

Zmn =
n+1

π
∑
x

∑
y

f (x,y)V ∗nm(ρ,θ), x2 + y2 ≤ 1. (3)

We use all moments up to n = 6, and m ∈ [−n,n], giving (n+ 1)(n+ 2)/2 basis functions.
Before clustering (see below) we normalise the Zernike moments as follows: (i) we use the
absolute value, so that the moments are invariant to rotation; (ii) we divide by the zeroth
order moment, so that the moments are invariant to pixel area.

2.4 Clustering
The problem now is to find clusters in a collection of shapes, in a fully unsupervised way. We
use two steps to balance computational efficiency and accuracy, both are explained below,
after an overview. First we use mean shift clustering, which is fast, well known, and above all
is non-parametric; in particular the number of clusters is not specified. We locate mean shift
clusters that are statistically significant, typically about 30 to 40 clusters, each with an asso-
ciated iconic shape. However, we have found mean-shift tends to produce too many clusters
in that some iconic shapes which should obviously be grouped are not. Fixing this inside
mean-shift is very difficult, we found it much easier to switch to an agglomerative clustering
based on shape correlation. This latter algorithm does not use any moment description at all,
and in principle could be used on all (whitened) shapes. However, agglomerative cluster-
ing depends on pair-wise interactions — mean-shift reduces the number of pairs from about
(104)2 to a more manageable 352, approximately.

2.4.1 Mean Shift Clustering

To use mean-shift we project all of the descriptors into a deflated eigen-space (aka. principal
component analysis) to leave a descriptor of about 17 dimensions. A whitening transform
ensures the data exhibits a unit standard deviation in each eigen-direction: now a single num-
ber can now control the bandwidth of a mean shift clustering algorithm, because the data are
equally spread in all directions. The bandwidth is automatically set to be (1/3)(vol/N)1/n

in which vol is the hyper-volume of the bounding box enclosing the N data points, which
exist in a n dimensional space. This is the characteristic radius of a hyper-sphere surrounding
each datum, assuming they are uniformly distributed, but scaled because we found most of
the points were clustered in about 1/3 of the hyper-volume, in each direction.
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(a) (b) (c)

Figure 4: (a):The probability of number of shapes in a group of a given size for different
databases using threshold segmentation and Zernike moments. Random shapes do not create
clusters of more than about 10 shapes. (b):Average shapes from mean shift clusters . (c):Error
images over mean shift clusters. These shapes come from the MIT database, and are ordered
so that the largest sized classes are top-left and smallest in bottom-right.

Mean shift yields many clusters of different sizes. Some clusters contain hundreds or
even thousands of shapes, others contain just one or two. In order to decide which clusters
are statistically significant we produce 104 random shapes, see 2.1. We clustered the random
shapes using mean shift, and found that no cluster size exceeded about 10, and the vast
majority were singletons, see Figure 4. This result suggests that the dimensions that remain
after deflation contain enough information to discriminate random shapes: we are not finding
shapes because our descriptor lacks resolution. The c in figure 4 shows clusters lose of
regions of similar shapes.

To locate statistically significant clusters in shapes drawn from an image database we
count the total number of shapes in a cluster of a given size to get p(m|D), which is the
probability of observing a cluster of size m, given source D ∈ {Image Database,Random}.
We keep only those clusters of size m for which p(m|Image Database) > p(m|Random).
There are typically around 30 to 40 such clusters, which together contain between 30% and
80% of all shapes, depending on the image database and segmentation method, see Table 1.
This is enough to have confidence that our hypothesis is valid — that simple shapes do exist
to a statistically significant degree. But repetition of classes is undesirable, so these clusters
are passed to the next clustering step.

2.4.2 Agglomerative Clustering

Mean-shift yields a few tens of clustered shapes, that number can be reduced to less than ten
by agglomerative clustering, using a method developed by ourselves. We begin by rotating
all (whitened) shapes in a cluster to the first. Now s(x,y, i, j) denotes a point in the ith aligned
shape in the jth cluster. It is now easy to compute the mean shape, and to estimate the spatial
error distribution:

m(x,y, j) =
1

N j

N j

∑
i=1

s(x,y, i, j), (4)

e(x,y, j) =

(
1

N j

N j

∑
i=1

(s(x,y, i, j)−m(x,y, j))2

)1/2

, (5)
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where N j is the number of shapes in class j. The error image, e, locates where the class varies
most — which invariably is at the boundary. We normalise e so the image sums to unity. The
thresholded mean shape icon(x,y, j) = m(x,y, j) ≥ mean[m(x,y, j)] acts as an icon for the
binary shapes in the class. Typical mean shapes and error images coming from mean shift
can be seen in Figure 4, which informally suggests regions of similar shape form clusters.
We must now combine classes, so need a class descriptor.

Our class descriptor uses the boundaries pixels of the icons, call these b(x,y, j). We rotate
a boundary image about its centre and at each angle, θ , computing its similarity to the error
image in the same class using

φ(θ , j) = ∑
xy

e(x,y, j)b(x,y, j,θ). (6)

φ(., .) is now a one-dimensional signal that characterises an icons rotational symmetry a-
gainst its own error set. Next, we compute the maximum of the normalised cross correlation
between pairs of classes, to obtain an inter-class similarity score:

c( j,k) = max
∑θ (φ(θ , j)− φ̄(θ , j))(φ(θ −α,k)− φ̄(θ ,k))

(∑θ (φ(θ , j)− φ̄(θ , j))2)(∑θ )(φ(θ −α,k)− φ̄(θ ,k))
. (7)

This is not a symmetric function, so that c( j,k) 6= c(k, j) in general. We set c(i, i) = 0. We
merge classes j and k only if their inter-class scores are such that they share a mutually
maximal class:(

argmax
i

c( j, i) = argmax
i

c(i, j)
)
=

(
argmax

i
c(k, i) = argmax

i
c(i,k)

)
. (8)

This ensures the pair of classes are tightly bound. In practice, we can group several clus-
ters simultaneously because a single icon may be mutually maximal with several others, so
that this form of agglomerative clustering is very efficient. All shape classes within a sin-
gle group are bundled into one, aligned, and a new mean and error image is computed by
weighted sums. For example m(x,y, j′) = ∑ j N jm(x,y, j)/∑ j N j, similarly for error images.
Agglomerative clustering halts when there is no change in the number of shape classes.

2.5 Results
Final shapes for each database and each segmentation method can be seen in Figure 5. The
shapes tend to be be simple — and nameable shapes such as circles, squares and triangles
are common. In some cases we also see a square under a homography, which lies between
square and triangle in feature space, and a simple shape lies between the square and circle,
we conjecture it is a composite of higher order regular polygons. There are some irregular
looking shapes too, but these are not often observed compared to the regular shapes. The
fractional number of these ’prime’ shapes depends on segmentation and database, but is
consistently high; as Table 1 shows, over 1/2 of all segmented regions fall into one of the
discovered categories.

3 An Application
Having found prime shapes, we now make use of them. One obvious application is to classify
regions in a new segmentation. To do this we construct a Gaussian mixture model (GMM)
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(a) (b) (c)

Figure 5: Matrices of final results. In each matrix element the shapes are ordered by descend-
ing frequency from top-left to bottom-right. (a) Each entry shows the shape icons yielded by
different databases, different segmentation methods. (b) Shape icons for different segmen-
tation methods yielded by combining all three databases, different segmentation methods.
(c): Final grouping result by combing all databases and segmentations. The number of each
prime shape is plotted in each corresponding icon. The total number of segmented regions,
classified or not, is 56992

Thresholding MSER Berkeley
MIT 66.65% 67.12% 81.45%

BSDS 59.92% 54.60% 80.65%
Natural 62.64% 36.24% 60.36%

Classified Shapes 37039
Un-Classified Shapes 19953
Classification Fraction 64.99%

Table 1: Left: The percentage of ’prime shapes’ detected as statistically significant amongst
total shapes from each database, using different segmentation algorithms. Right: The num-
ber of classified and un-classified shapes from all three databases, and the fraction of classi-
fied shapes. See Figure 5 to the total in each shape class.

of the density of shape moments for each class that it output by the clustering algorithm.
In addition, we construct a GMM over all the random shapes. Using random shape classes
allows for the possibility that a given segmented region is not classified as a prime shape.
For a shape class S, let Ω = (N,{µi,Ci}) be a GMM with means µi and covariance matrices
Ci.

p(x|S) = ∑
i=1

N p(x|Ωi)p(Ω) (9)

The posterior that shape x belongs to class S follows from Baye’s rule

p(S|x) = p(x|S)p(S)
∑T∈S∪R p(x|T )p(T )

(10)

where S is the set of prime shape class, and R the random shape class. the priors p(T )
are the proportion of shapes clustered into class T from the image data base being used;
typically p(T = R) ≈ 0.5 but since the random shapes are thinly distributed the likelihood
p(x|S = R) is often small, so segmented regions are classified into prime shape categories.
Typical output can be seen in Figure 1

We noticed that the priors on different prime shapes depends on the database used, and
these contain different sorts of photograph. The MIT database, for example contains street
scenes, where as our natural database is exclusively landscapes, forests, coastal scenes etc.
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(a) Coast (b) Forest (c) Highway (d) Inside City

(e) Mountain (f) Open Country (g) Street (h) Tall Building

Figure 6: Typical pictures from Oliva’s database [24].

This suggests a scene classification appliaction, which is a popular research area, for ex-
ample [7, 15, 16, 24]. Our classifiers learn the ratio of prime shapes (and random shapes)
associated with a given category of scene. We assume the ratio of priors for a given cate-
gory is Dirichlet distributed, because the ratios for any given image sum to unity and are a
multinomial distribution. That is, if z is the ratio of priors then

p(z)∼ D(β1, ...,βK) =
Γ(Σkβk)

∏
K
k Γ(βk)

K

∏
k

zβk−1
k , (11)

where Γ denotes the gamma function, and β are the Dirichlet parameters found by fit-
ting [21]. Each distinct scene category, C has a distinct vector of β values. Given a new
scene it is then easy to compute its ratio of prime shapes (and random), z, and hence com-
pute p(z|C) and therefore the posterior p(C|z).

We used Oliva’s database [24], partitioning the data into 800 training images and 800
test images. The test set images have given ground-truth categories, so we could produce
the confusion matrix seen in Table 2 — next to Oliva’s own results for comparison, which
is representative of state of the art. Our result is not quite as strong as Oliva’s, but strong
nonetheless; broad classes such as ’Urban’ and ’Natural’ are very well classified. Given our
approach is a simpler algorithm than any state of the art alternative, we found this to be a
surprising result. We can explain the ambiguous cases in our table, but space prevents us,
and scene classification is just one example. Our purpose here is to show that prime shapes
have value in real applications; cross modal matching [4, 5] is a particular interest of ours.

T I S H C O M F
tal 80 0 0 11 0 0 0 9
ins 0 85 3 5 0 5 2 0
str 2 42 20 15 3 0 17 1
hig 7 1 9 83 0 0 0 0
coa 3 0 3 19 75 0 0 0
ope 17 0 4 0 17 2 47 13
mou 1 0 0 0 9 0 90 0
for 11 0 1 0 4 1 31 52

T I S H C O M F
tal 82 9 2 0 0 0 5 1
ins 3 90 3 1 0 1 0 0
str 1 5 89 2 0 1 2 1
hig 0 3 2 87 4 4 1 0
coa 0 0 0 8 79 12 1 0
ope 0 0 2 5 13 71 6 3
mou 1 0 2 2 2 5 81 7
for 1 0 0 0 0 1 6 91

Table 2: Confusion Matrix. (Left):Our Proposed Method (Green: Urban Scene, Yellow:
Natural Scene), (Right):Spatial Envelope [24]
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4 Conclusion
This is an experimental paper. Its main contribution is a discovery which is unique, so far as
we know: regions in image segmentations naturally form classes that correspond to simple,
easily recognisable shapes. In fact, more than half of the segmented regions in the datasets
can be classified into prime shapes. We found this to be true no matter what segmentation
algorithm we used, no matter what databased we used, an no matter how we described the
shape of segmented regions. There are no arbitrary parameters in our clustering algorithm,
which is fully unsupervised. In short, we have provided empirical evidence to suggest that
natural images contain simple shapes to a statistically significant degree.

Clustering and other details such as alignment and noise handling can no doubt be im-
proved, perhaps to sharpen the output icons. Yet the results clearly show prime shapes e-
merging from segmentations: they are ‘features in the signal’, and as such may be of use to
many applications in Computer Vision and maybe elsewhere, not just scene classification.
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