
A. BELHEDI ET AL.: DEPTH CORRECTION 1

Depth Correction for Depth Cameras
From Planarity

Amira Belhedi123

amira.belhedi@cea.fr

Adrien Bartoli2

http://isit.u-clermont1.fr/~ab/

Vincent Gay-Bellile1

vincent.gay-bellile@cea.fr

Steve Bourgeois1

Steve.BOURGEOIS@cea.fr

Patrick Sayd1

Patrick.SAYD@cea.fr

Kamel Hamrouni3

kamel.hamrouni@enit.rnu.tn

1 CEA, LIST, LVIC,
F-91191 Gif-sur-Yvette, France.

2 Clermont Université, Université
d’Auvergne, ISIT, BP 10448, F-63000
Clermont-Ferrand, France.

3 Université de Tunis El Manar, Ecole
Nationale d’Ingénieurs de Tunis, LR-
SITI Signal Image et Technologie de
l’Information, BP-37, Le Belvédère,
1002 Tunis, Tunisia.

Abstract

Depth cameras open new possibilities in fields such as 3D reconstruction, Augmented
Reality and video-surveillance since they provide depth information at high frame-rates.
However, like any sensor, they have limitations related to their technology. One of them
is depth distortion. In this paper, we present a method to estimate depth correction for
depth cameras. The proposed method is based on two steps. The first one is a non-
planarity correction that needs depth measurement of different plane views. The second
one is an affinity correction that,contrary to state of the art approaches, requires a very
small set of ground truth measurements. Thus, it is more easy to use compared to other
methods and does not need a large set of accurate ground truth that is extremely difficult
to obtain in practice. Experiments on both simulated and real data show that the proposed
approach improve also the depth accuracy compare to state of the art methods.

1 Introduction
Real time depth measurement is an important requirement for many applications such as
collision prevention and motion interpretation. Until recently, available systems have been
limited mainly to laser scanners and stereo vision. The former does not work in real time or
is limited to a small part of the scene while the latter might drop accuracy on low textured
scenes. Recently, promising active sensors have been developed that outperform past tech-
nologies. Two families of active sensors can be distinguished: Time-of-Flight (TOF) sensor
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and structured light sensor such as the Microsoft’s Kinect. They provide depth images in
real time even for poorly textured scenes. However, they have a limitation: they are subject
to depth measurement distortion. In this article, we propose a new depth correction method,
that do not impose a physical model and thus can be used for any depth camera. In the fol-
lowing, we focus on TOF camera since it has been used for the experiments. Some works,
e.g. [2, 4, 11] have been devoted to understanding the causes of depth distortion related to
TOF technology and measuring them. The most critical cause, that we called systematic
error, is due to the fact that the modulation signal (see [5] for TOF principle) is not a perfect
sinusoidal. There are other causes such as the reflectivity of the objects in the scene, the
integration time, the incident light with respect to the objects’ orientation and the camera’s
low resolution (lack of accuracy at depth discontinuities).

In this article we present a new model for the correction of the systematic error. Some
models has been presented in literature. Simple model [10] try to describe the depth distor-
tion by a linear function that depends on the depth measured and the pixel position in the
image. More complex models use a look-up table [3] or B-spline function [6] for a global
distortion correction in addition with a simpler model for a per-pixel distortion correction. A
non-parametric model [1] describes the depth distortion by a discrete function.

Figure 1: Classical approaches require a set of accurate ground truth that are obtained by
track line system or target extraction approach. The first system is expensive. The second
approach does not provide accurate ground truth: it is not feasible to extract accurate point
due to the camera’s low resolution (lack of accuracy at transition area): the red crosses
represent the different possibilities of a corner localization. Our approach uses planar views
and does not need a large number of ground truth.

The main limitation of these methods is that they require an accurate ground-truth for
each depth-pixel (e.g. from 0.75m to 7.5m with a step of 10cm for each pixel in [6]). How-
ever, acquiring these reference depths is extremely difficult for several reasons. In fact, an
additional system is required, i.e. high accuracy track line as in [3, 6] or a calibrated color
camera as in [1, 7, 10] (see Figure 1). The former system is expensive and is only used
to provide the measurement of a single pixel per image. The latter one requires an accu-
rate stereo calibration that can not be reached due to the low accuracy of targets extraction
caused by the ToF images’ characteristics (low-resolution, noise, etc). In contrast, the pro-
posed method is more easy to use. It is based on two steps. The first one is a non-planarity
correction where depth measurements of different plane views are required which is easy to
set up. The second one is an affinity correction where a small set of ground truth is needed.
10 reference measurements is used in the implementation that are computed by target ex-
traction approach. Thus, the advantage of our calibration approach is the ability to use it
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easily, and to be able to recalibrate on-line. Simulated data are used to validate our approach
and to compare the obtained results with two methods from the literature. We also present
experimental results on real data.
Plan. This article is structured as follows. A description of our method is presented in
Section 2. The solution of the main step of the presented approach is detailed in Section 3.
The results obtained using both simulated and real data and a comparison with state of the art
approaches are presented in Section 4. Finally, conclusions and further work are discussed
in Section 5.
Notation. q is the depth-pixel (3-vector) and Q is the corresponding 3D point in the camera
coordinate frame defined as: qT = (u v d) QT = (X Y Z), where (u v) the pixel coor-
dinates and d the associated depth. Homogeneous coordinates are written as Q̌ = (QT 1).

2 Depth Correction From Planarity
The proposed approach operates on the 3D space (correction of the 3D point Q), in contrast
to the most existing methods which operate in the 2.5D space (correction of d(u,v)). We
demonstrate in the appendix that it is equivalent since it exists a transformation (Equation
(14) between the two spaces. Our approach is composed of two steps:

Non-planarity correction (NPC): estimates a correction function F : ψ → R,ψ ⊂ R3

such that, F(Q) =CZ where ψ is a subset of R3 : ψ = [Xmin;Xmax]× [Ymin;Ymax]× [Zmin;Zmax]
and CZ is a scalar that represents the Z correction. F lies in L2(ψ) 1. NPC is based on training
F : collecting a massive set of different views (different orientations and different distances)
of a plane that intersect to cover all the 3D calibrated space (see Figure 4(a)), which is easy to
set up. The 3D points of each view are not coplanar. This is caused by the depth distortion.
The NPC principle is to train F such that the corrected points of each view tend toward
coplanar points. This will constraint F up to a global 3D affine transformation A.

Affine correction (AC): estimates an affine transformation A. Any affine transformation
of the corrected space will keep the planarity constraints. Estimating A (12 parameters)
requires to collect a small set of ground truth measurements. AC will end up as linear least
squares constraints and can be easily solved. In the following, we focus on the NPC step,
since AC is trivial. The NPC is first formulated as a variational problem and it is then
resolved using an iterative process.

2.1 Variational Problem Statement of The NPC
Let our input data be n views with m points: Qi j

def
= (Xi j Yi j Zi j)

T, where i is the plane
view number and j is the position of pixel in the image. The goal is to undistort the points
{Q j}m

j=1 so that they become coplanar. The constraints are :

Si j, j=1,...,m ∈Πi, i=1,...,n,

where Si j is expressed from Equation (14) as S =
(

X + 1
Z XCZ Y + 1

ZYCZ Z +CZ
)

is the
corrected point and can be rewritten as Q+ 1

Z F(Q)Q and Πi is an unknown 3D plane in
the corrected space, corresponding to view i. We represent a plane Πi by a vector Pi ∈ R3

whose norm is the inverse of the distance to the camera center and that is collinear to the
1The Hilbert space of square-integrable functions
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plane’s normal. The set of the unknown planes P = {P1, . . . ,Pn} ∈ R3 are latent variables.
The problem statement is formulated as the minimization of a cost functional C:

min
F∈L2,P

C[F,P], (1)

which is composed of a data term Cd , a regularization term Cs and a regularization weight λ :

C[F,P] def
= Cd [F,P]+λCs[F ]. (2)

Data term. It minimizes the distance between the corrected points S and the plane Π:

Cd [F,P]
def
=

n

∑
i=1

m

∑
j=1

d2(Si j,Πi), (3)

where d corresponds to the point-to-plane Euclidean distance:

d2(S,Π)
def
=

(STP+1)2

‖P‖2
2

. (4)

Regularization term. It is the ‘bending’ energy defined as:

Cs[F ]
def
=
∫

ψ

∥∥∥∥ ∂ 2F
∂Q2

∥∥∥∥2

2
dQ. (5)

2.2 Iterative Resolution of The NPC
The objective is to estimate F minimizing C (Equation (1)). It corresponds to a non-convex
and non-linear optimization problem where both P and F have to be estimated. Since it is
difficult to simultaneously estimateP and F , an iterative process is adopted, which alternates
the estimation of P and the estimation of F . The different steps of the iterative process is
resumed in (Algorithm 1). Initially, F is set to no correction (F0), then it is updated at each
iteration (k is the iteration number) getting closer and closer to the solution. It is convenient
to view the algorithm as two alternatively minimization steps. The first one consists on
fixing Fk to estimate Pk (EP step). The second one consists on fixing Pk to estimate Fk+1

(EF step). For the EP step, Pk that minimizes Cd [Fk,P] is estimated. First, the corrected
points {Si j}m

j=1 are computed from Fk. After that, the plane Πi that best fits these points by
minimizing point-to-plane distance is estimated. This must be done for all views to obtain
Pk. The EP step corresponds to a linear least square minimization problem which can be
easily solved. Now, Pk is fixed and Fk+1 that minimizes C[F,Pk] is estimated (EF step).
This step depends on the used correction model. We choose a 3D smoothing spline, known
as a 3D Thin-Plate-Spline to model the correction function. A solution of the EF step with
this model is presented in Section 3.

3 Correction Function Modeling and Estimation
The depth correction depends on X, Y and Z position. These variations cannot be well
modelled by a simple linear function. A more complex model is needed. It must also provide
continuity, since it must gives for each 3D point the associated Z correction. A 3D Thin-
Plate-Spline function is therefore chosen, since it verifies all these conditions. In this section,
the 3D TPS model is first presented and the solution for the EF step (of the NPC process) is
then detailed.
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Algorithm 1 Iterative resolution of the NPC
k ← 0 : first iteration.
Fk← 0 : initialize F to no correction (0 is the ’zero’ function).
repeat
Pk ← argminP Cd [Fk,P] (EP step).
Fk+1 ← argminF∈L2 C[F,Pk](EF step).
k ← k+1.

until Fk+1 ≈ Fk or the preset iteration number (20 in the implementation) is achieved.

3.1 Correction Function Modeling with 3D TPS

A 3D-TPS R3→R is a smooth function [8] known to be an efficient approximation to many
types of deformation and that minimizes the ‘bending energy’. It is flexible, controlled by l
3D centres ck (ck ∈ R3,k = 1, . . . , l) that may be placed anywhere in the space. It is usually
parametrized by an l+4 coefficient vector hT = ( wT aT ). There are l coefficients in w and
four coefficients in a. The coefficients in w must satisfy P̌Tw = 0, where the kth row of P̌T

is given by
(
cTk 1

)
. These four ‘side-conditions’ ensure that the TPS has square integrable

second derivatives. Let `TQ = ((d(Q,c1)) · · · (d(Q,cl)) QT 1), 3D-TPS at point Q is:

ω(Q,h) = `TQh =

(
l

∑
k=1

wkd(Q,ck)

)
+aTQ̌. (6)

We use a 3D-TPS to model the correction function F by defining a set of l centres positioned
throughout the working volume (Figure 4(a)): F(Q)

def
= `TQh. This parametric function is

chosen for many reasons. First, it efficiently approximates the Z correction being considered
as a deformation. Second, it limits the memory requirement, in fact, only the l+4 parameters
and the l centers have to be saved. l is the unknown hyper-parameter included in this model
that have to be estimated (see Section 4.2). The corrected point S can be expressed by:

S =
(

X + 1
Z X`TQh Y + 1

Z Y `TQh Z + `TQh
)
. (7)

3.2 Correction Function Estimation

Data term. The data term (Equation (3)) can be rewritten from (Equation (7) and (4)) as:

Cd(h,P) =
n

∑
i=1

m

∑
j=1

( 1
Zi j

Pi
TQi j`

T
Qij

‖Pi‖2
h+

Pi
TQi j +1
‖Pi‖2

)2

= ‖Dh−b‖2
2, (8)

where D ∈ Rnm×(l+4) and b ∈ Rnm×1. The four ‘side-conditions’ (see Section 3.1) are nec-
essary for each coefficient of w to ensure that (8) has a solution. Let V2 ∈ R(l+4)×l be the
matrix corresponding to the l vectors of the (P̌T 0) null space basis. The null space is cal-
culated numerically by SVD. When these conditions are incorporated into (Equation (8)),
replacing h by V2h1 (h1 ∈ Rl), we obtain:

Cd(h,P) = ‖DV2h1−b‖2
2. (9)
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Regularization term. It is defined (for 3D TPS) as:

Cs(h)
def
= wTKw. (10)

To rewrite this equation as a matrix norm depending on h1, the matrix K can be expressed as
K= BTB with B ∈Rl×l and w can be rewritten as: w = V3h1, where V3 ∈Rl×l corresponds
to the l first lines of V2. Thus (Equation (10)) can be write as:

Cs(h) = ‖BV3h1‖2
2. (11)

EF Solving. Minimizing C is equivalent to solving the following system obtained by com-
bining (Equation (9)) and (Equation (11)):

C(h,P) =
∥∥∥∥( DV2√

λBV3

)
h1−

(
b
0

)∥∥∥∥2

2
. (12)

The matrix D is a very large system of linear equations. In fact, a large number of 3D
points is used (n×m = 46× (204× 204) more details in Section 4.1). A part of the cali-
brated space ranged approximately from 1m to 2.5m is shown in the Figure 4(a). We can-
not save D in memory, thereafter, in our implementation, we compute directly the matrix
T=DTD, T∈R(l+4)×(l+4) without forming the D matrix (the computation of T is very time
consuming). Thus, the system Equation (12) can be solved by the pseudo-inverse technique:
h1 =

(
V2

TTV2 +λV3
TKV3

)−1
V2

TDTb. Finally, the 3D-TPS parameters h is obtained by:

h = V2h1. (13)

4 Experimental Results
In this section, we evaluate the accuracy of the proposed method and compare it with two
methods from the literature on simulated data. A second experience on real data is also
performed to evaluate the NPC. In the following, the experimental protocol is first presented
and the results of the two experiences are then discussed.

4.1 Experimental Protocol
The data set used for the two experiences corresponds to different views of a plane that in-
tersect to cover all the calibrated 3D space. It is divided into three parts: training, test and
validation data set. The training set is used to perform different calibrations (NPC and AC es-
timation) by varying the set of hyper-parameters (l,λ ). These calibrations are then evaluated
on the test set to select the optimal (l,λ ) values (that minimize the RMS of the point-to-plane
Euclidean distance). The final results used to evaluate our method are obtained on the valida-
tion set using the optimal set of (l,λ ). The simulated data are obtained by distorting a plane
with a distortion function that varies according to the distance and increases from the image
centre to the image boundaries. They cover a distance range from 1m to 3m. A training set
of 36 plane views is used (Figure 4(a)). For the real data, the TOF camera used is a PMD
CamCube2 with a resolution of 204×204 pixels [9] and the observed object corresponds to
a white wall. The data cover a distance range from 2m to 7m. A training set of 46 plane
views is used. The AC is performed using a set of 10 reference data. These data represent
the central pixel of 10 reference plane (shown in Figure 4(f)). For both experiences, the test
and validation set contain each 10 plane views.
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4.2 Experience with Simulated Data
Calibration. The calibration steps are shown in Figure 4. Initially (k = 0), the point-
to-plane distance is large (Figure 4(c)), it decreases at the next iteration (Figure 4(d)) and
become very small in the last iteration (Figure 4(e)). After NPC step, the points are coplanar
but not aligned with ground truth Figure 4(g). The AC step is then performed. It is shown in
Figure 4(h) that after AC the obtained data are very close to the ground truth.

Optimal set of hyper-parameters (l,λ ). We have to determine the optimal values of (ł,λ ).
Different calibrations are performed by varying (l,λ ) and then tested. The results shown in
Figure 2 represent the RMS error computed after NPC. They are represented by a mesh with
x− and y− coordinates are respectively λ and l. It shows that, from l = 53 (5 centres over
X−, Y− and Z−), the system is stable over a large range of λ (blue part). Note that l must
be chosen as small as possible to limit computation time, while not degrading the results.
For this reason, l = 53 is chosen, since it is the smallest value that gives a small RMS. Now,
l is fixed, we have to determine the optimal λ value. We propose to use the golden section
search. It is a fast and robust minimum search method. The optimal λ value computed with
this method is equal to 0.12 (Rms = 1.36 mm).

Results. The proposed method is evaluated on the validation set. An example of a fronto-
parallel view is chosen in Figure 3. This view is situated at a distance of 1.20m from the
camera. The distortion increases from the image centre to the image boundaries (the max-
imum distortion is 60mm). After the NPC, a perfect plane is obtained (Figure 3(c)): all
points are coplanar and situated at 1.22m; however, they are not aligned with the ground
truth (1.20m). It is shown in the Figure 3(d) that after the AC the final corrected plane is
very close to the ground truth. To evaluate the proposed method over all the pixels of the
validation data set, we compare the point-to-plane distance before and after correction. For
the NPC validation, the distance to the plane that best fits the points (d(S,ΠS)) is considered,
while for the AC validation, the distance to the ground truth plane d(S,ΠGT ) is used. The
results are presented in Table 1. We observe an important improvement. After NPC, the
RMS error is equal to 1.36 mm whereas it is equal to 15.64 mm before correction. After
AC, the RMS error is equal to 2.27 mm whereas is equal to 24.22 mm before correction. An
improved depth image accuracy is obtained with the proposed approach.

Comparison. In order to evaluate the proposed approach, a comparison with two methods
from the literature is performed. The depth calibration methods proposed in [6] and in [3]
have been implemented and tested on the same validation data set. The distance to the ground
truth plane d(S,ΠGT ) is used to compare results (see Table 2). The obtained results are as
good as [6]: the RMS error remaining after depth correction is equal to 2.27 mm whereas
it is equal to 2.99 mm with [6]. We observe an accuracy improvement with our approach
compared to [3] (remaining RMS is equal to 6.59 mm). In fact, the global distortion is not
well estimated (just the pixel at the image center is considered) with this method.

4.3 Experience with Real Data
The proposed method is evaluated on the validation set of real data. The optimal values of
l,λ are respectively 63,0.4 (determined by the golden section search method). An example
of the wall view is chosen in Figure 5. After the NPC step, the 3D points are coplanar.
A comparison of the point-to-plane distance before and after correction is also performed
to evaluate the accuracy of the proposed method over all the pixels. Before correction, the
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RMS is equal to 27.63 mm, while after correction it is equal to 8.03 mm. The remaining
RMS is considered sensor noise. In fact, an evaluation of the sensor noise is performed, the
standard deviation of the wall is computed out of 100 measurements in every pixel. It varies
from 5 mm to 18 mm. In spite of noise, a good results are obtained.
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Figure 2: Point-to-plane distance measured after NPC by varying hyper-parameters values.
Mesh representation with l range from 3 to 8 and λ range from 10−4 to 104 in logarithmic
scale. The optimal set of parameters is λ = 0.12 and l = 53 (represented by diamond)

(a) (b) (c) (d)

Figure 3: Fronto-parallel view of the plane (a) undistorted (ground truth) (b) before correc-
tion, (c) after NPC and (d) after AC

before NPC after NPC
d(S,ΠS) 15.64 1.36

before AC after AC
d(S,ΠGT ) 24.22 2.27

Table 1: RMS error (mm)

Depth errors
(mm)

Uncalibrated 29.17
Our method 2.27
[6] 2.99
[3] 6.59

Table 2: Comparison with two ap-
proaches from the literature

5 Conclusion
We presented a depth correction method based on a non-planarity correction that requires a
large set of plane views and an affinity correction that needs a very small set of ground truth
measurements. A 3D TPS is used to model the correction function. This type of model is
used, to our knowledge, for the first time in this context. Our method has the advantage to
be easy to use compared to the most methods from the literature. In fact, it does not need
a ground truth for each depth measurement. Experimental results on both simulated and
real data demonstrate the validity and accuracy of the proposed approach. Future work will
improve the results by applying a more robust denoising filter [8] to the depth image before
correction estimation. It would also be interesting to test the proposed approach for depth
images provided by the Kinect sensor.
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(a) Training data plotted together with TPS centres
(l is set to 53).

(b) Cross-section of (a).

(c) NPC: k = 0 (d) NPC: k = 1 (e) NPC: k = l

(f) After NPC (g) Before AC (h) After AC
Figure 4: Simulated data results during depth correction process. (a)A part of calibrated
space ranged from 1m to 2.5m. A part of (b) is considered to show obtained results at (c)
first iteration, (d) second one and (e) last one of NPC. (f)A small set of reference data used
to compute A plotted together with the corresponding section of training data obtained after
NPC. Comparison of results (g) before and (h) after AC.

Figure 5: A view of the wall (left) before correction and (right) after correction (the color
represents the point-to-plane distance)

APPENDIX Equivalence Between Correction Functions f and F

The depth correction is generally modelled by a function f : Ω→ R, Ω⊂R3 that associates
to each point q of the space the corresponding correction such that: f (q) = c where Ω is a
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Figure 6: Distance d versus 3D point Q

subset of R3 : Ω = [umin;umax]× [vmin;vmax]×
[dmin;dmax] and c is a scalar that represents the
depth correction. In other word, d + c is the cor-
rected depth. The proposed method estimates an
equivalent function F (see Section 2) that corrects
Q. We show in the following that it exists a trans-
formation between the two function spaces. We
assume that the camera’s intrinsics parameters are known, thus, the transformation from q to
Q in metric space can be estimated (as shown in the Figure 6). We call (cu cv) the optical
center on the sensor array, fc the camera focal length, (du dv) the pixel pitch in the u (resp.
v) direction. Neglecting lens distortion, the transformations between q and Q are given by:X = Z (u−cu)du

fc
Y = Z (v−cv)dv

fc
Z = d fc√

f 2
c +((u−cu)du)2+((v−cv)dv)2

{
u = fc

du
X
Z + cu v = fc

dv
Y
Z + cv

d = Z
√

f 2
c +((u−cu)du)

2+((v−cv)dv)
2

fc

(14)

Finding f is equivalent to find F and c can be obtained from F(Q) by simple transformation:
c = f (q) = F(Q)

fc√
f 2
c +((u− cu)du)2 +((v− cv)dv)2

. (15)
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