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Abstract

Most existing feature selection methods focus on ranking individual features based
on a utility criterion, and select the optimal feature set in a greedy manner. However, the
feature combinations found in this way do not give optimal classification performance,
since they tend to neglect the correlations among features. In an attempt to overcome this
problem, we develop a novel unsupervised feature selection technique by using hyper-
graph spectral embedding, where the projection matrix is constrained to be a selection
matrix designed to select the optimal feature subset. Specifically, by using multidimen-
sional interaction information (MII) as a higher order similarity measure, we establish a
novel hypergraph framework which is used for characterizing the multiple relationships
within a set of samples. Thus, the structural information latent in the data can be more
effectively modeled. We then derive a hypergraph embedding view of feature selection
which casts the feature discriminant analysis into a regression framework that consid-
ers the correlations among features. Within our framework, features are evaluated in
combinations rather than considered individually, and feature redundancies can thus be
addressed accordingly. Experimental results demonstrate the effectiveness of our feature
selection method on a number of standard datasets.

1 Introduction
In order to render the analysis of high-dimensional data tractable, it is crucial to identify a
smaller subset of features that are informative for classification or clustering. Dimensional-
ity reduction aims to reduce the number of attributes under consideration, and the process
can be roughly classified into two categories: a) feature extraction and b) feature selection.
Feature extraction usually projects the features into a low-dimensional and distinct feature
space, e.g., Locally Linear Embedding (LLE) [1], kernel PCA [2], Locality preserving Pro-
jection (LPP) [3], Neighborhood Preserving Embedding (NPE) [4] and Laplacian eigenmap
[5]. Unlike feature extraction, feature selection identifies the optimal feature subset in the
original feature space. By maintaining the original features, feature selection improves the
interpretability of the data, which is preferred in many real world applications, such as face
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recognition and text mining. Feature selection algorithms can be roughly classified into two
groups, namely a) supervised feature selection and b) unsupervised feature selection.

While the labeled data required by supervised feature selection can be scarce, there is
usually no shortage of unlabeled data. Hence, there are obvious attractions in developing
unsupervised feature selection algorithms which can utilize the unlabeled data. One typical
examples in unsupervised learning is graph-based spectral learning algorithms, including the
Laplacian score [8], SPEC [7] and Unsupervised Discriminative Feature Selection (UDFS)
[12]. Given d features and a similarity matrix S for the samples, the idea of spectral feature
selection algorithms is to identify features that align well with the leading eigenvectors of
S. The leading eigenvectors of S contain information concerning the structure of the sample
distribution and group similar samples into compact clusters. Consequently, features that
align closely to them will better preserve sample similarity [7]. For example, the Laplacian
score [8] uses a nearest neighbor graph to model the local geometric structure of data, where
the pairwise similarities between features are calculated using the heat kernel. In this frame-
work, the features are evaluated individually and are selected one by one. The SPEC [7]
algorithm is an extension of the Laplacian score that renders it more robust to noise. The
method selects the features most consistent with the graph structure. Note that SPEC also
evaluates features independently.

However, there are two limitations to the above graph-based spectral feature selection
methods. Firstly, they evaluate features individually, and hence cannot handle redundant
features. Redundant features increase the dimensionality unnecessarily, and worsen learning
performance when faced with a shortage of data. It is also shown empirically that removing
redundant features can result in significant performance improvement. The second weak-
ness is that in many situations the graph representation for relational patterns can lead to
substantial loss of information. This is because in many real-world problems objects and
their features tend to exhibit multiple relationships rather than simple pairwise ones. For
example, consider the problem of classifying faces which are under different lighting con-
ditions. See Figure 1 for an illustration. It is well known that images of the same objects
may look drastically different under different lighting conditions. In this scenario, pairwise
similarity measures for images of the same person may exhibit great variety. This misleading
result is due to the fact that the set of images of a Lambertian surface under arbitrary lighting
lies in a 3D liner subspace in the image space [9] where multiple relationships exist, and the
higher order relations cannot be suitably characterized by pairwise similarity measures.

Figure 1: Shown above are four images of the same individual under varying illumination.
Is it possible to group them into one cluster based on pairwise similarity measure?

A natural way for remedying the misleading representation described above is to repre-
sent the dataset as a hypergraph instead of a graph. Hypergraph representations allow ver-
tices to be multiply connected by hyperedges and can hence capture multiple or higher order
relationships between features. Due to their effectiveness in representing multiple relation-
ships, we introduce a hypergraph embedding view of feature selection by subspace learning.
The method jointly evaluates the utility sets of features rather than individual features. There
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are three novel ingredients. The first is that by incorporating hypergraph representation into
feature selection, we can effectively capture the higher order relations among samples. Sec-
ondly, inspired from the recent works on mutual information [18], we determine the weight
of a hyperedge using an information measure referred to as multidimensional interaction
information (MII) which precisely preserves the higher order relations captured by the hy-
pergraph. The advantage of MII is that it is sensitive to the relations between sample combi-
nations, and as a result can be used to seek third or even higher order dependencies among
the relevant samples. Thus, the structural information latent in the data can be more effec-
tively modeled. Finally, we describe a new feature selection strategy through hypergraph
embedding, which casts the feature discriminant analysis into a regression framework that
considers the correlations among features. As a result, we perform feature selection through
evaluating feature combinations rather than considering individual features. In this manner,
the feature redundancies can be overcome to a certain degree.

2 Hypergraph Construction

In this section, we establish a novel hypergraph framework which is used for characterizing
the multiple relationships within a set of samples. To this end, we commence by introducing
a new method for measuring higher order similarities among samples based on information
theory. According to Shannon’s study, the uncertainty of a random variable X can be mea-
sured by the entropy H(X). For two random variables X and Y , the conditional entropy
H(Y |X) measures the remaining uncertainty about Y when X is known. The mutual infor-
mation I(X ;Y ) of X and Y quantifies the information gain about Y provided by X . The
relationship between H(Y ), H(Y |X) and I(X ;Y ) is I(X ;Y ) = H(Y )−H(Y |X). As defined
by Shannon, the initial uncertainty for X is H(X) =−∑x∈Y P(x) logP(x), where P(x) is the
prior probability density function over x ∈ X . The remaining uncertainty for Y if X is known
is defined by the conditional entropy H(Y |X) = −

∫
x p(x){∑y∈Y p(y|x) log p(y|x)}dx, where

p(y|x) denotes the posterior probability for y ∈Y given x ∈ X . After observing x, the amount
of additional information gain is given by the mutual information

I(X ;Y ) = ∑
y∈Y

∫
x

p(y,x) log
p(y,x)

p(y)p(x)
dx . (1)

The mutual information (1) quantifies the information which is shared by X and Y . When
the I(X ;Y ) is large, it implies that x and y are closely related. Otherwise, when I(X ;Y ) is
equal to 0, it means that two variables are totally unrelated. Analogically, the conditional
mutual information of X and Y given Z, denoted as I(X ;Y |Z) = H(X |Z)−H(X |Y,Z), repre-
sents the quantity of information shared by X and Y when Z is known. The conditioning on
a third random variable may either increase or decrease the original mutual information. In
this context, the Interaction Information I(X ;Y ;Z) is defined as the difference between the
conditional mutual information and the simple mutual information, i.e.

I(X ;Y ;Z) = I(X ;Y |Z)− I(X ;Y ) . (2)

The interaction information I(X ;Y ;Z) measures the influence of the variable Z on the
amount of information shared between variables X and Y . Its value can be positive, negative,
or zero. Zero valued Interaction Information I(X ;Y ;Z) implies that the relation between X
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and Y entirely depends on Z. A positive value of I(X ;Y ;Z) implies that X and Y are inde-
pendent of each other themselves, but are correlated with each other when combined with
Z. A negative value of I(X ;Y ;Z) indicates that Z can account for or explain the correlation
between X and Y . The generalization of Interaction Information to K variables is defined
recursively as follows

I({X1, · · · ,XK}) = I({X2, · · · ,XK}|X1)− I({X2, · · · ,XK}) . (3)

Based on the higher order similarity measure, we establish a hypergraph framework
for characterizing a set of high dimensional samples. A hypergraph is defined as a triplet
H = (V,E,w). Here V denotes the vertex set, E denotes the hyperedge set in which each hy-
peredge e ∈ E represents a subset of V , and w is a weight function which assigns a real value
w(e) to each hyperedge e∈E. We only consider K-uniform hypergraphs (i.e. those for which
the hyperedges have identical cardinality K) in our work. Given a set of high dimensional
samples X = [x1, · · ·xN ]

T where xi ∈Rd , we establish a K-uniform hypergraph, with each hy-
pergraph vertex representing an individual sample and each hyperedge representing the Kth
order relations among a K-tuple of participating samples. A K-uniform hypergraph can be
represented in terms of Kth order matrix, i.e. a tensorW of order K, whose element Wi1,··· ,iK
is the hyperedge weight associated with the K-tuple of participating vertices {vi1 , · · · ,viK}.
In our work, the hyperedge weight associating with {xi1 ,xi2 , · · · ,xiK} is computed as follows

Wi1,··· ,iK = K
I(xi1 ,xi2 , · · · ,xiK )

H(xi1)+H(xi2)+ · · ·H(xiK )
. (4)

It is clear that Wi1,··· ,iK is a normalized version of K-th order Interaction Information. The
greater the value of Wi1,··· ,iK is, the more relevant the K samples are. On the other hand, if
Wi1,··· ,iK = 0, the K samples are totally unrelated.

3 Hypergraph Representation

Unlike matrix eigen-decomposition, there has not yet been a widely accepted method for
spanning a rationale eigen-space for a tensor [15]. Therefore, it is hard to directly em-
bed a hypergraph into a feature space spanned by its tensor representation through eigen-
decomposition. In our work, we consider the transformation of a K-uniform hypergraph
into a graph. Accordingly, the associated hypergraph tensor W is transformed to a graph
adjacency matrix A, and the higher order information exhibited in the original hypergraph
can be encoded in an embedding space spanned by the related matrix representation. In this
scenario, one straightforward way for the transformation is marginalization which computes
the arithmetical average over all the hyperedge weights Wi1,··· ,iK−2,i, j associated with the edge
weight Ai, j

Ãi, j =
|V |

∑
i1=1
· · ·

|V |

∑
iK−2=1

Wi1,··· ,iK−2,i, j (5)

The edge weight Ãi, j for edge i j is generated by a uniformly weighted sum of hyperedge
weights Wi1,··· ,iK−2,i, j. However, the form appearing in (5) behaves as a low pass filter, and
thus results in information loss through marginalization.
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To make the process of marginalization more comprehensive, we use marginalization to
constrain the sum of edge weights and then estimate their values through solving an over-
constrained system of linear equations. Our idea is motivated by the so called clique average
introduced in the higher order clustering literature [13]. We characterize the relationships
between A andW as follows

Wi1,··· ,iK = ∑
{i, j}⊆{i1,··· ,iK}

Ai, j (6)

There are
(|V |

2

)
variables and

(|V |
K

)
equations in the system of equations described in (5).

When K > 2, the linear system (5) is over-determined and cannot be solved analytically. We
thus approximate the solution to (5) by minimizing the least squares error

Â = argmax
A

∑
i1,··· ,iK

(
∑

{i, j}⊆{i1,··· ,iK}
Ai, j−Wi1,··· ,iK

)2

(7)

In practical computation, we normalize the compatibility tensorW by using the extended
Sinkhorn normalization scheme [16], and constrain the element of A to be in the interval [0,1]
to avoid unexpected infinities. Effective iterative numerical methods are used to compute the
approximated solutions [17].

The adjacency matrix A computed through (7) is one effective representation for a K-
uniform hypergraph, because it naturally avoids the operation of arithmetic average and thus
to a certain degree overcomes the low pass information loss arising in (5). Furthermore, the
Laplacian matrix L for a hypergraph can be defined as L = D−A, where D is the diagonal
matrix with its ith diagonal element being Aii = ∑ j Ai j. In this context, a hypergraph can
be easily embedded into a feature space spanned by its Laplacian matrix, which will be
explained in detail in the next Section.

4 Feature Selection through Hypergraph Embedding
In this section, we formulate the procedure of feature extraction on a basis of hypergraph
spectral embedding. One goal of spectral embedding is to represent the high dimensional
data X ∈ RN×d by a low dimensional representation Y ∈ RN×C (C� d) in the low dimen-
sional feature space such that the structural characteristics of the high dimensional data are
well preserved or are more “obvious”. Here we use the representations X = [x1, · · ·xN ]

T and
Y = [y1, · · · ,yk, · · · ,yC], where yk is a N-dimensional vector and its N elements represent the
N samples x1, · · ·xN separately in the kth dimension of the low dimensional feature space.

Based on the hypergraph transformation described in Section 3 and the scheme of Lapla-
cian eigen-decomposition [5], the hypergraph spectral embedding can be easily conducted
as follows

D−1LY = λY . (8)

The hypergraph embedding procedure can be viewed as feature extraction, and can be
expressed as Y = XΦ where Φ ∈ Rd×C is a column-full-rank projection matrix. However,
unlike feature extraction, feature selection attempts to select the optimal feature subset in
the original feature space. Therefore, for the task of feature selection, the projection matrix
Φ = [Φ1, . . .ΦC] can be constrained to be a selection matrix which contains the combination
coefficients for different features in approximating Y = [y1, . . . ,yC]. That is, given the kth
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column of Y, i.e yk, we aim to find a subset of features, such that their linear span is close to
yk. This idea can be formulated as the minimization problem

Φ̂ = argmin
Φ

C

∑
k=1
‖yk−XΦk‖2 . (9)

where Φ = [Φ1, · · · ,Φk, · · · ,ΦC] and Φk is a d dimensional vector that contains the combi-
nation coefficients required to compute for different features in approximating yk. However,
feature selection requires to locate an optimal subset of features that are close to yk. This is
a combinatorial problem which is NP-hard. Thus we approximate the problem in (9) subject
to the constraint

|Φk| ≤ γ (10)

where |Φk| is the `1-norm and |Φk| = ∑
d
j=1 |Φ j,k|. When applied in regression, the `1-norm

constraint is equivalent to applying a Laplace prior [10] on |Φk|. This tends to force some
entries in Φk to be zero, resulting in a sparse solution. Therefore, the representation Y is
generated by using only a small set of selected features in X.

In order to efficiently solve the optimization problem in Equations (9) and (10), we use
the Least Angle Regression (LARs) algorithm [11]. Instead of setting the parameter γ , LARs
allow us to control the sparseness of Φk. This is done by specifying the cardinality of the
number of nonzero subset of Φk, which is particularly convenient for feature selection.

We consider selecting m features from the d feature candidates. For a dataset containing
C clusters, we can compute C selection vectors {Φk}Ck=1 ∈ Rd . The cardinality of each Φk is
m and each entry in Φk corresponds to a feature. Here, we use the following computationally
effective method for selecting exactly m features based on the C selection vectors. For every
feature j, we define the HG score for the feature as

HGscore( j) = max
k
|Φ j,k| . (11)

where Φ j,k is the jth element of vector Φk. We then sort the features in descending order
according to their HG scores, and then select the top m features.

5 Experiments and Comparisons
We test the performance of our proposed algorithm on one publicly available face database
(ORL), one shape image database (MPEG-7), and two handwritten digit databases (USPS,
MNIST). Table 1 summarizes the coverage and properties of the four benchmark datasets.

Dataset Examples Features Classes
ORL 400 1024 40

MPEG-7 1400 6000 70
USPS 9298 256 10

MNIST 4000 784 10

Table 1: Summary of benchmark datasets

Data Transformation: we compare the data transformation performance of our pro-
posed method using hypergraph embedding (HG embedding) with alternative methods, in-
cluding kernel PCA [2], the Laplacian eigenmap [5] and LPP [3]. In order to visualize the

Citation
Citation
{} 

Citation
Citation
{} 

Citation
Citation
{} 

Citation
Citation
{} 

Citation
Citation
{} 



ZHANG ET AL.: UNSUPERVISED FEATURE SELECTION VIA HYPERGRAPH EMBEDDING7

(a) HG embedding (b) kernel PCA (c) Laplacian eigenmaps (d) LPP

Figure 2: Distribution of samples of five subjects in ORL dataset.

(a) HG embedding (b) kernel PCA (c) Laplacian eigenmaps (d) LPP

Figure 3: Distribution of samples of five subjects in MPEG-7 dataset.

results, we have used five randomly selected subjects from each dataset, and these are shown
in Figures 2, 3, 4 and 5. In each figure, we have shown the projections onto the leading two
most significant eigenmodes from different spectral embedding methods, ordered according
to their eigenvalues. This provides a low-dimensional representation for the images. From
the above figures, it is clear that our hypergraph spectral embedding method demonstrates
much clearer cluster structure than alternative spectral clustering methods. This implies that
the hypergraph representation is more appropriate and more complete in describing feature
relations and structures existing in these datasets.

Dataset MRMR Fisher Score Laplacian Score SPEC UDFS UFSHE
ORL 83.5%(95) 80%(99) 65.25%(99) 64.5%(95) 76.5%(99) 91%(75)

MPEG-7 80.83%(194) 77.83%(200) 76.5%(198) 63.67%(200) 75.17%(190) 82.33%(151)
USPS 95.75%(143) 95.8%(103) 94.05%(165) 94.2%(198) 95.65%(161) 98.8%(59)

MNIST 82.5%(284) 81.25%(293) 82.05%(291) 82.1%(292) 81.3%(293) 84.33%(90)

Table 2: The best result of all methods and their corresponding size of selected feature subset
on four benchmark image datasets.

Classification Accuracy: In order to explore the discriminative capabilities of the infor-
mation captured by our method, we use the selected features for further classification. We
compare the classification results from our proposed method (UFSHE) with five alternative
feature selection algorithms. For unsupervised learning, three alternative feature selection
algorithms are used as baselines. These methods are the Laplacian score [8], SPEC [7] and
UDFS [12]. We also compare our results with two state-of-the-art supervised feature se-
lection methods, namely a) the Fisher score [6] and b) the MRMR algorithm [14]. We use
5-fold cross-validation for the SVM classifier on the feature subsets obtained by the feature
selection algorithms to verify their classification performance. Here we use the linear SVM
with LIBSVM.
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(a) HG embedding (b) kernel PCA (c) Laplacian eigenmaps (d) LPP

Figure 4: Distribution of samples of five subjects in USPS dataset.

(a) HG embedding (b) kernel PCA (c) Laplacian eigenmaps (d) LPP

Figure 5: Distribution of samples of five subjects in MNIST dataset.

The classification accuracies obtained with different feature subsets are shown in Fig-
ure 6. From the figure, it is clear that our proposed method UFSHE is, by and large, superior
to the alternative feature selection methods. Specifically, it selects both a smaller and bet-
ter performing (in terms of classification accuracy) set of discriminative features on all four
datasets. Moreover, UFSHE rapidly converges, with typically around 30 features (see Fig-
ures 6 (a), (c) and (d)). Each of the alternative unsupervised methods, usually require more
than 100 features to achieve a comparable result. The reason for this improvement is that the
hypergraph representation is effective in capturing the higher order relations among samples
and thus the structural information latent in the data can be effectively preserved. Addition-
ally, our hypergraph based feature selection method casts the feature discriminant analysis
into a regression framework which suitably characterizes the correlations among features. As
a result, the optimal feature combinations can be located so as to remove redundant features.

Compared with the two state-of-the-art supervised feature selection algorithms, our pro-
posed unsupervised method (UFSHE) outperforms the MRMR algorithm and Fisher score
in all cases. On the USPS dataset (see Figure 6 (c)), even though MRMR and Fisher score
can give good classification performance when more than 100 features are selected, UFSHE
achieves a better result with a much smaller number of features, i.e., less than 60 features.
This implies that our proposed method is able to locate both the optimal size of the feature
subset and perform accurate classification of the samples based on just a few of the most
important features.

The best result for each method together with the corresponding size of the selected
feature subset are shown in Table 2. In this table, the classification accuracy is shown first and
the optimal number of features selected is reported in brackets. Overall, UFSHE achieves the
highest degree of dimensionality reduction, i.e. it selects a smaller feature subset compared
with those obtained by the alternative methods. For example, in the MNIST dataset, the
best result obtained by the alternative feature selection methods is 82.5% with the MRMR
algorithm and 284 features. However, our proposed method (UFSHE) gives a better accuracy
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(a) ORL dataset (b) MPEG-7 dataset (c) USPS dataset (d) MNIST dataset

Figure 6: Accuracy rate vs. the number of selected features on four benchmark image
datasets.

of 84.33% when only 90 features are used. The results further verify that our feature selection
method can guarantee the optimal size of the feature subset, as it not only achieves a higher
degree of dimensionality reduction but also gives better discriminability.

Dataset MRMR Fisher Score Laplacian Score SPEC UDFS UFSHE
ORL 1.47 1.72 1.68 1.65 1.62 1.37

MPEG-7 0.0839 0.1508 0.1221 0.2310 0.0920 0.0906
USPS 1.1830 1.0920 1.3540 1.5600 1.4200 0.9825

MNIST 0.2112 0.2304 0.2587 0.2431 0.3123 0.1373

Table 3: Averaged Redundancy rate of Subsets Selected Using Different Algorithms.

Redundancy Rate: Table 3 shows a comparison of results from our proposed method to
the alternative feature selection methods using the top n features, where n is the number of
training data. In the table, the boldfaced values are the lowest redundancy rates. The subset
obtained by our proposed scheme has the least redundancy. This further verifies that our
propose algorithm is able to remove redundant features.

The accuracy rate (Table 2) and redundancy rate (Table 3) together indicate that UFSHE
both gives the least redundancy, and results in the highest accuracy. They also underline
the necessity of removing redundant features for improving learning performance. It should
also be observed that the MRMR algorithm also produces low redundancy rates. However,
it does not perform as well in terms of classification accuracy. This can be explained by
the observation that in MRMR, feature contributions to classification process are considered
individually by evaluating the correlation between each feature and the class label. However,
the class label may be jointly determined by a set of features. This interaction among features
is not considered by MRMR.

6 Conclusion

In this paper, we have presented an unsupervised feature selection method based on hyper-
graph embedding. The proposed feature selection method offers two major advantages. The
first is that by incorporating MII for higher order similarity measure, we establish a novel hy-
pergraph framework which is used for characterizing the multiple relationships within a set
of samples. Thus, the structural information latent in the data can be more effectively mod-
eled. Secondly, we derive a hypergraph embedding view of feature selection which casts
the feature discriminant analysis into a regression framework that considers the correlations
among features. As a result, we can evaluate joint feature combinations, rather than being
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confined to consider them individually. These properties enable our method to be able to
handle feature redundancies effectively.
Acknowledgements: Peng Ren was supported by a National Natural Science Foundation
of China Grant 61105005. Edwin R. Hancock was supported by a Royal Society Wolfson
Research Merit Award.
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