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Abstract

Many tasks in computer vision rely on accurate detection and matching of visual
landmarks (e.g. image corners) between two images. In particular, for the calculation
of epipolar geometry from a minimal set of five correspondences the spatial accuracy of
matched landmarks is critical because the result is very sensitive to errors.

The most common way of improving the accuracy is to calculate a sub-pixel location
independently for each landmark in the hope that this reduces the re-projection error of
the point in space to which they refer. This paper presents a method for refining the
coordinates of correspondences directly. Thus given some coordinates in the first image,
our goal is to maximise the accuracy of the estimate of the coordinates in second image
corresponding to the same real world point without being too concerned about which real
world point is being matched.

We show how this can be achieved as a frequency domain optimisation between two
image patches to refine the correspondence by estimating affine parameters. We select
the correct frequency range for optimisation by identifying a direct relationship between
the Gabor phase based approach and the frequency response of a patch. Further, we show
how parametric estimation can be made accurate by operating in the frequency domain.

Finally, we present experiments which demonstrate the accuracy of this approach, its
robustness to changes in scale and orientation and its superior performance by compari-
son to other sub-pixel methods.

1 Introduction
Accuracy of 3D structure calculation from an image sequence depends on accurately com-
puting the motion of the camera. This in turn requires reliable feature extraction and match-
ing. A particular problem that drives this work is that of calculating the essential matrix
that describes the epipolar geometry of two images for which the internal camera parameters
are known. This can be done from a minimal set of five correspondences between the two
images using a polynomial solving algorithm [18] which can generate up to 10 Essential
matrices, or by iterative optimisation of the residual error. In either case, the hypothesis gen-
erated from five matches is extremely sensitive to the accuracy with which the matches are
extracted from images.

To improve the accuracy of the generated hypothesis, descriptor based feature match-
ing which works at pixel level may not be adequate and sub-pixel level information may
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be needed. A number of applications already use something better than just pixel sampled
information. Sub-pixel methods have been used extensively for stereo matching [19][15].
But most of these techniques are based on the assumption that the 2-D image motion, result-
ing from 3-D camera motion can be described using a simple translation model[6]. Widely
used sub-pixel methods can be categorized as interpolation based methods (correlation inter-
polation, intensity interpolation and geometric methods)[1], phase correlation methods and
differential methods (optical flow and parameter optimisation)[22].

Phase correlation has worked well for sub-pixel registration. But conventional phase
correlation techniques fail when the matching window under consideration becomes small.
Recent work has shown the necessity to fit a function to the phase correlation measurement
in order to get satisfactory results [20]. Though these methods can be extended to sub-pixel
patch matching/refinement, their applicability is limited to simple translations where any
affine transformation needs to be rectified separately at a prior stage. Differential methods
use a constraint equation under intensity conservation assumption [11][12][17] or handle
the problem as an optimisation over a set of parameters[2], which works well under local
patch deformations. Therefore in recent years, a considerable attention has been given to
more complex motion models based on parameter estimation [4]. Such methods based on
hierarchical or multi-resolution approaches have a limited applicability in time critical appli-
cations. But, because of the noise sensitivity and the better convergence rate, later parametric
motion model has been extended in to the frequency domain [13, 14]. Such frequency do-
main approaches have shown better performance and noise tolerance compared to spatial
domain methods. These methods use the shift invariance of the magnitude spectra to first
estimate four non-translational affine parameters. The translation is then estimated using
phase correlation between affine rectified images.

But in the frequency domain, the phase contains much information compared to the
magnitude [7, 10] and shows a better robustness to noise [8]. Without discarding the phase,
simultaneous optimisation of all six parameters yields better results. We parameterise the
signal using the six parameter affine model with an additional parameter to compensate for
energy changes of the signal. In pose estimation, the illumination between two consecutive
frames won’t change significantly. So the effect of the seventh parameter is trivial for our
application. By optimizing in the frequency domain, it is possible to achieve improved results
and a fast convergence rate. The fast convergence is a result of the multi-resolution nature
that naturally arises with such an approach as we explain later. The following summarises
our approach and contributions:

• For sub-pixel refinement, we represent local affine transformations of an image patch
in the frequency domain and optimise over a set of parameters simultaneously, using
both magnitude and the phase of the signal.

• We model local transformations of a projectively transformed image pair by an affine
transformation, selecting a 32x32 patch around two corresponding corners and then
try to refine the second corner position by affine warping frequency spectrum of the
first patch and changing the phase of the second.

• In order to further increase the accuracy, we re-sample the second patch using the
estimated translation.

• We derive a relationship between the Gabor filter phase difference and the frequency
representation of a Gaussian weighted image patch and use this to select the effective
frequency range for the optimisation.
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• Using several re-sampling stages in the frequency and the spatial domains we get better
sub-pixel accuracies (down to 0.1 pixels under moderate affine transformations) and a
better convergence.

• These sub-pixel refined correspondences are then used to get a more stable and an
accurate pose estimate.

The remainder of this paper is structured as follows. Section 1.1 briefly analyses the
sensitivity of the camera pose to pixel noise and justify the necessity of a pixel-refinement
stage. Section 2 describes the frequency domain affine parameterisation method with a crite-
rion for selecting the correct frequency range. In section 3 we demonstrate the effectiveness
of the new method for sub-pixel refinement with experimental results and conclude with a
brief discussion.

1.1 Monocular pose estimation

The sensitivity of Essential matrix calculation to correspondence data is partly a consequence
of nonlinear error propagation with depth which leads to a deviation from the desirable Gaus-
sian uncertainty representation. Different parametrisation techniques have been proposed to
reduce this non linearity to get better results [16]. Though these methods are capable of
making the pose estimation less sensitive to pixel noise, it still remains as a major source
that corrupts the final estimate [5].

Figure 1 shows the results of a simulated experiment that illustrates this point. In this ex-
periment, 100 3D landmarks were randomly generated around a specified average depth (20)
from the first camera. These points were then projected into a second camera with a trans-
lation of 1 unit away from the first, with a random rotation. Then an isotropic measurement
noise was added to these projected locations. All corresponding points from two views were
then used to compute the least squares approximation to the essential matrix from which the
translation and the rotation were recovered to compare the result with the ground truth. It
can be seen that the absolute error for both translation and rotation increases rapidly when
the average noise level is increased.

(a) Translation error vs noise (b) Rotation error vs noise

Figure 1: Pose estimation absolute error (estimated from two artificially projected camera
frames) vs the maximum noise magnitude
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2 Estimation of the affine transformation
In this section we present the affine parameter model in the frequency domain. We make use
of the affine theorem in the frequency domain [3]. Given two image patches I0(x̄) and I1(x̄)
surrounding two corresponding corners, which are related by an affine coordinate transfor-
mation I1(x̄) = I0

[
A−1

(
x̄− b̄

)]
, where A and b are the four non translational affine param-

eters and two translational parameters respectively, their 2-D Fourier transforms are related
by:

Î1(ū) = |det (A)|e− jū·b̄ Î0
(
AT ū

)
(1)

The shift invariance property of the magnitude spectra of equation 1 enables the estimation
of b̄ to be separated from the estimation of A [14]. But discarding phase is a huge waste as
phase carries a lot of information in the frequency domain, which can be used to get more
stable and fast estimations by simultaneously optimising all six parameters.

Here we use the six parameter affine model with an additional parameter. The seventh
parameter compensates for energy changes caused by different local illumination conditions.
If we select β̄ = {β1 . . .β7} to be the parameter set and absorb the |det (A)| of the equation 1
into β7 we have:

β7 Î1(ū) = e− jū·b̄ Î0
(
AT ū

)
where A =

(
β1 β2
β3 β4

)
and b̄ =

(
β5
β6

)
(2)

so β7e jū·b̄ Î1 (ū) = Î0
(
AT ū

)
(3)

Thus the error r, for a frequency ū can be written as,

r
(
ū, β̄
)
= β7e jū·b̄ Î1 (ū)− Î0

(
AT ū

)
(4)

The above equation enables us to model the affine transformation as a phase change of
Î1 and a warp of Î0 with respect to matrix A. The Jacobian Ji of partial derivatives of r with
respect to βi can then be computed:

[J1, J2, J3, J4, J5, J6, J7] =

[
−∂ I0

∂u
u, −∂ I0

∂u
v, −∂ I0

∂v
u, −∂ I0

∂v
v, −β7 Ĩ1u, −β7 Ĩ1v, Ĩ1

]
(5)

Given a set of frequencies {u j}, the errors r(u j) and the Jacobian Ji j can be used to obtain
the parameters β̄ that minimise E = ∑ j ‖r(u j)‖2 using Gauss-Newton.

2.1 Iterative refinement
After initializing the set of parameters by setting A to be the identity and b̄ to a zero vector,
we use Gauss-Newton method to warp the frequency patch Î0 with respect to the first four
parameters β1 . . .β4, and phase shift the patch Î1 with the remaining two parameters β5 and
β6. Warping is done by sub-sampling the original frequency patch using bilinear interpo-
lation. After optimizing for two or three iterations in the frequency domain, we extract the
parameters β5 and β6, which correspond to a translation in the spatial domain in x and y
directions respectively. Then these two parameters are used to re-sample the second patch
(patch I1) in the spatial domain at the new refined position using spatial sub-sampling. The
Fourier transform of this patch is then used to re-estimate a new set of affine parameters.
This routine is continued until sufficient accuracy is achieved. According to experimental
results, two spatial sampling steps are usually sufficient to reduce the average pixel error
down to 0.1 pixels.
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2.2 Aliasing and the DC response

There are two issues that need to be addressed in order for this to work in practice. FFT re-
quires a periodic signal. So each patch has to be compensated for edge effects at the border.
Secondly, the presence of a large DC component in the signal corrupts low frequency com-
ponents of the signal in the frequency domain (those where ‖u‖ is small). To remove edge
effects from the image patches, we multiply it by a Gaussian weighting window (G(x,y))
centered at the detected landmark before taking the Fourier transform. Before doing that, the
DC component of the patch which appears as a large spike at u = 0 in the frequency domain
can be removed by subtracting the average, which gives a new patch. After alleviating both
of these effects we get a new patch I′(x,y) defined as:

I′(x,y) = G(x,y)
(

I(x,y)− ∑x,y G(x,y)I(x,y)

∑x,y G(x,y)

)
(6)

This gives a patch with a 0 DC coefficient. The frequency response of the Gaussian mul-
tiplied patch, F [I′] has a direct relationship with the Gabor filter with an identical Gaussian
support. We use this relationship to select the useful frequency range (in order to eliminate
possible aliasing effects) for the optimisation in a multi resolution manner.

Multiplying the patch by a Gaussian in the spatial domain is equivalent to a convolution
by the Fourier transform of the Gaussian in the frequency domain. So each frequency point
of the signal F [I′] represents the average of the Fourier transform of the original signal
around that point. This resembles the effect of a Gabor filter. Fourier transform of a Gabor
filter is a shifted Gaussian in the frequency domain. This makes frequency points of the
Fourier transform of I′ to be responses of the original patch (with applied DC offset) to a set
complex Gabor filters. This interpretation can be used to select the frequency range for the
optimization.

Because the phase of a particular Gabor filter response changes linearly under spatial
translations of the signal, it can be used to estimate spatial disparity of two instances of a the
same signal with a relative shift [9]. This phase disparity is useful only if the displacement is
smaller than a half a wavelength of the tuning frequency [9] of the Gabor filter, i.e the domain
of convergence for the phase is ±π . This imposes an upper frequency limit for the useful
frequency range. If we assume a maximum displacement of d pixels for a 1-D signal this
criteria suggests a frequency f such that f ≤ 1/2d. In 2-D this requirement can be met by
limiting the useful frequency range radially to a maximum of 1/2d radius. After estimating
the translation (and other parameters) using small frequencies for large displacements finer
refinements can be done gradually by increasing the radius, incorporating higher frequency
responses to the optimization.

Though subtracting the DC component spatially as in equation 6 can mostly reduce its
effect, for better results we have to impose a lower frequency limit as well. We select the
minimum frequency using the one octave bandwidth criteria which has been suggested in
the literature [8] for Gabor filter based disparity estimations. The one octave bandwidth in
the frequency domain for the Gabor filter shows the spatial support to be:

σ =
1

2π f

(
2α +1
2α −1

)
(7)

If we select above frequency f keeping the spatial support σ a constant, in order to
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Figure 2: Iterative optimization based on sub-sampling in the frequency and the spatial do-
mains

eliminate any DC distortion the minimum frequency should be:

f ≥ 1
2πσ

(
2α +1
2α −1

)
(8)

Combining the minimum and the maximum criteria for frequency selection gives:

1
2d
≥ f ≥ 1

2πσ

(
2α +1
2α −1

)
(9)

At the end of each iteration we can expect the displacement d to reduce, increasing the
useful frequency range. Higher frequencies carry finer details about the translation, which
improves the final solution. This naturally enables a multi-resolution framework for refine-
ment without any additional computations.

Figure 2 summarises the steps we use to sub-pixel refine a target corner position with
respect to the given reference.

3 Results
In this section we results of applying the proposed refinement method to refine corner cor-
respondences and compare it to a baseline spatial refinement method. The spatial method
performs an iterative Gauss-Newton optimisation over a set of seven affine parameters to
minimise the sum of the sqaured differences between I0 and the affine transformation ap-
plied to I1, sampled with bilinear interpolation: ∑x̄ I1(x̄)− I0

[
A−1

(
x̄− b̄

)]
.
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(a) Original image (b) Transformed image

(c) Error distribution after spatial domain refinement (d) Error distribution after frequency domain refinement

Figure 3: Reference and transformed image pairs error distributions.

Here we refine point correspondences between two synthetically generated affine trans-
formations, homographies obtained from two real planar views and for epipolar geometry
calculation between two frames of a real 3D scene.

3.1 Synthetically generated transformations
We first performed an experiment to demonstrate the improvement that can be achieved by
two refinement methods in a situation where the ground truth transformation between two
images was known. Synthetic data was generated first by transforming a reference image
using a known affine transformation with bilinear interpolation. To remove interpolation
artifacts, both images were down scaled by a factor of two. Then FAST features were ex-
tracted from the first image and projected into the second, using the known transformation.
Projected corners were then rounded off to the nearest integer pixel. The raw pixel errors
were then calculated as the distance between the ground truth and the rounded off positions.
Figure 3 shows typical performance. With this setup the average unrefined pixel error is
0.4102. The spatial domain refinement method reduced the average error to 0.2907, while
the frequency based method reduced it further to 0.1414.

3.2 Real image homographies
Here, we applied the method to a pair of images from the Graffiti database shown in Figure
4(a). FAST features were extracted from both images and matched using HIPS [21]. Inliers
were then found by applying RANSAC to these raw matches and fixed for all stages of the
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(a) Graffiti image pair

(b) Unrefined (c) Spatial (d) Frequency

Figure 4: Residual error distribution for the first image pair in Graffiti database

experiment. The inlier matches were then refined using both spatial and frequency methods.
Homographies were then computed using the raw, spatial and frequency refined matches
minimising ∑i r2

i where ri =
√
‖xi−Hyi‖2 +‖yi−H−1xi‖2/2 is the residual error of a match

and xi is the homogeneous image coordinates of a FAST feature in image 1 and yi is the
homogeneous image coordinates of the refined location of its match in image 2. Figure 4
shows the distribution of the residual errors ri for each of the three schemes (raw, spatial
and frequency) applied to this image pair. The average raw error was 0.8877, the spatial
refinement method reduced this to 0.6683 and the frequency refinement method reduced it
to 0.4960.

3.3 Pose estimation

As discussed in Section 1.1, pose estimation from an Essential matrix is extremely sensitive
to matching errors, and benefits from sub-pixel refinement. For a set of image pairs we

Residual error in pixels for image pairs

P1 P2 P3

HIPS Raw 0.447879 0.571511 0.535419
Refined 0.360749 0.384233 0.373508

Sub-pixel SIFT 0.541322 0.435442 0.690141

Table 1: Comparison of Frequency-based refinement with sub-pixel features from SIFT
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Figure 5: Two image pairs used for pose estimation

estimated Essential matrices using the interative five-point pose algorithm for FAST corners
matches with HIPS. The symmetric residual point to line error was then calculated for each
correspondence. These matches were then refined using frequency domain method and the
Essential matrix was re-estimated. The residual errors were then recalculated. We compare
our results with sub-pixel SIFT results. Table 1 summarises those errors. Figure 5 shows
image pairs used for pose estimation.

4 Discussion and conclusion
In this paper we introduced an affine parametric model for match refinement that operates
in the frequency domain. By making maximum use of phase information, we are able to
obtain an accurate parameter estimation, in particular of the translation, that can be applied
to obtain the best match. Most importantly we have shown the ability of the newly proposed
method to refine correspondences in a coarse-to-fine multi-resolution manner in the Fourier
domain.

Experimental results establish the effectiveness of the proposed method for modeling
local patch deformations which can be used for sub-pixel refinement. Such locally refined
corners can be then used to estimate the global monocular pose with improved accuracy. As
a post processing step, after a less accurate but fast descriptor based feature matching stage
our method can be used for efficient sparse match refinement.

However, due to the fixed size of the Gaussian weighting function, we have found that
the refinement accuracy is sensitive to scale changes of more than 20− 30%. If the image
pair contain scale changes larger than this, some image pyramids scheme would be neces-
sary. Further, if the translation is large compared to the minimum half wave-length of the
selected frequency band, the solution degenerates as the Hessian matrix in Gauss-Newton
algorithm becomes ill conditioned. Thus the accuracy of the final result depends on the
coarse-to-fine frequency tuning of the optimization. Fortunately, in practice, the feature de-
tection and matching methods used in this paper give correspondences that are well within
the convergence band of our algorithm.
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