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Accurate 3D structure calculation requires reliable feature extraction and
matching. To improve the accuracy of the generated hypothesis, descrip-
tor based feature matching which works at pixel level may not be adequate
and sub-pixel level information may be needed. In this paper we propose
a frequency domain optimisation technique, which yields improved re-
sults and a fast convergence rate. The fast convergence is a result of the
multi-resolution nature of the solution.

We make use of the affine theorem in the frequency domain [1]. Given
two image patches I0(x̄) and I1(x̄) surrounding two corresponding cor-
ners, which are related by an affine coordinate transformation I1(x̄) =
I0
[
A−1 (x̄− b̄

)]
, where A and b are the four non translational affine pa-

rameters and two translational parameters respectively, their 2-D Fourier
transforms are related by:

Î1(ū) = |det (A)|e− jū·b̄ Î0

(
AT ū

)
(1)

Here we use the six parameter affine model with an additional param-
eter. The seventh parameter compensates for energy changes caused by
different local illumination conditions. If we select β̄ = {β1 . . .β7} to be
the parameter set and absorb the |det (A)| of the equation 1 into β7 we
have:

β7 Î1(ū) = e− jū·b̄ Î0

(
AT ū

)
where A =

(
β1 β2
β3 β4

)
and

(2)

b̄ =

(
β5
β6

)
(3)

so β7e jū·b̄ Î1 (ū) = Î0

(
AT ū

)
(4)

Thus the error r, for a frequency ū can be written as,

r
(
ū, β̄

)
= β7e jū·b̄ Î1 (ū)− Î0

(
AT ū

)
(5)

The above equation enables us to model the affine transformation as a
phase change of Î1 and a warp of Î0 with respect to matrix A. The Jacobian
Ji of partial derivatives of r with respect to βi can then be computed:

J̄ =

[
−∂ I0

∂u
u, −∂ I0

∂u
v, −∂ I0

∂v
u, −∂ I0

∂v
v, −β7 Ĩ1u, −β7 Ĩ1v, Ĩ1

]
(6)

Given a set of frequencies {u j}, the errors r(u j) and the Jacobian Ji j can
be used to obtain the parameters β̄ that minimise E = ∑ j ‖r(u j)‖2 using
Gauss-Newton.

FFT requires a periodic signal. So each patch has to be compensated
for edge effects at the border. Secondly, the presence of a large DC com-
ponent in the signal corrupts low frequency components of the signal in
the frequency domain (those where ‖u‖ is small). To remove edge effects
from the image patches, we multiply it by a Gaussian weighting win-
dow (G(x,y)) centered at the detected landmark before taking the Fourier
transform. Before doing that, the DC component of the patch which ap-
pears as a large spike at u = 0 in the frequency domain can be removed by
subtracting the average, which gives a new patch. After alleviating both
of these effects we get a new patch I′(x,y) defined as:

I′(x,y) = G(x,y)
(

I(x,y)−
∑x,y G(x,y)I(x,y)

∑x,y G(x,y)

)
(7)

This gives a patch with a 0 DC coefficient. The frequency response
of the Gaussian multiplied patch, F [I′] has a direct relationship with the
Gabor filter with an identical Gaussian support. We use this relationship
to select the useful frequency range (in order to eliminate possible aliasing
effects) for the optimisation in a multi resolution manner.

Figure 1: Pose estimation after sub-pixel refinement

Because the phase of a particular Gabor filter response changes lin-
early under spatial translations of the signal, it can be used to estimate
spatial disparity of two instances of a the same signal with a relative shift
[2]. This phase disparity is useful only if the displacement is smaller than
a half a wavelength of the tuning frequency [2] of the Gabor filter, i.e
the domain of convergence for the phase is ±π . This imposes an upper
frequency limit for the useful frequency range. If we assume a maximum
displacement of d pixels for a 1-D signal this criteria suggests a frequency
f such that f ≤ 1/2d. In 2-D this requirement can be met by limiting the
useful frequency range radially to a maximum of 1/2d radius. After esti-
mating the translation (and other parameters) using small frequencies for
large displacements finer refinements can be done gradually by increasing
the radius, incorporating higher frequency responses to the optimisation.

Though subtracting the DC component spatially as in equation 7 can
mostly reduce its effect, for better results we have to impose a lower fre-
quency limit as well. We select the minimum frequency using the one
octave bandwidth criteria which has been suggested in the literature for
Gabor filter based disparity estimations. The one octave bandwidth in the
frequency domain for the Gabor filter shows the spatial support to be:

σ =
1

2π f

(
2α +1
2α −1

)
(8)

If we select above frequency f keeping the spatial support σ a con-
stant, in order to eliminate any DC distortion the minimum frequency
should be:

f ≥ 1
2πσ

(
2α +1
2α −1

)
(9)

Combining the minimum and the maximum criteria for frequency se-
lection gives:

1
2d
≥ f ≥ 1

2πσ

(
2α +1
2α −1

)
(10)

At the end of each iteration we can expect the displacement d to re-
duce, increasing the useful frequency range. Higher frequencies carry
finer details about the translation, which improves the final solution. This
naturally enables a multi-resolution framework for refinement without any
additional computations.
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