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Abstract

Fine-grained categorization of object classes is receiving increased attention, since
it promises to automate classification tasks that are difficult even for humans, such as
the distinction between different animal species. In this paper, we consider fine-grained
categorization for a different reason: following the intuition that fine-grained categories
encode metric information, we aim to generate metric constraints from fine-grained cate-
gory predictions, for the benefit of 3D scene-understanding. To that end, we propose two
novel methods for fine-grained classification, both based on part information, as well as a
new fine-grained category data set of car types. We demonstrate superior performance of
our methods to state-of-the-art classifiers, and show first promising results for estimating
the depth of objects from fine-grained category predictions from a monocular camera.

1 Introduction
The recognition of basic-level object categories [25] in natural images has made remarkable
progress over the last decade, both in image-level categorization and bounding box localiza-
tion settings [6]. More recently, the recognition of finer-grained, subordinate categories is
receiving increased attention [2, 3, 7, 18, 20, 28, 30, 32, 33]. The problem of fine-grained
categorization is deemed challenging due to the need to capture subtle appearance differ-
ences between categories while at the same time maintaining robustness to intra-category
variations induced by changes in pose and viewpoint. As a consequence, the focus of pre-
vious work has been mostly on object categories and methods that favor discrimination by
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strong local appearance cues (such as random color image patches for birds [32]) or global
image statistics (such as color histograms for flowers [20]). In this setting, computer vision
techniques could be shown to facilitate fine-grained categorization tasks that are difficult
even for humans due to the sheer number and diversity of subordinate categories [3, 20, 28].

Our paper goes beyond previous work on fine-grained categorization in two ways. First,
in addition to exploring the task of fine-grained categorization itself, we suggest the use of
fine-grained category predictions as an input for higher-level reasoning. This is based on
the observation that fine-grained categories can encode, among other aspects, information
about metric object sizes, which can in turn provide geometric constraints for scene-level
reasoning. Following this line of argumentation, we focus our attention on rigid, geometric
objects that can provide, if correctly categorized, reliable metric size estimates, and introduce
a novel dataset of fine-grained car types as a test bed for our approach. This data set is
annotated with 2D bounding boxes, viewpoint estimates, car types, and additionally includes
metric object sizes (length, width, and height) for use in geometric reasoning.

The second way our work departs from previous work [20, 32] is that we design a fine-
grained object class representation that captures variations in object shape and geometry
rather than appearance, in order to match the object class of interest. To that end, we intro-
duce two different variants of utilizing part detections as indicators of object geometry, of
varying complexity. Both are based on the best-performing object class detector to date, the
deformable part model (DPM [10]). The first variant is based on part detections provided
by a pre-trained, generic detector for the object class. Similar in spirit to object-bank [16],
it generates features from (part) detector responses by spatial pooling, and feeds them into a
classifier for categorization. Relying on existing detectors, this first variant is computation-
ally cheap, and outperforms state-of-the-art classifiers on our data set. The second variant
uses the DPM directly for fine-grained categorization, by reformulating it as a structured
output prediction problem [24], and directly optimizing a multi-class loss function. While
this variant is computationally more demanding, it significantly improves over the first, since
part detectors are now directly optimized for the task at hand. It outperforms state-of-the-art
classifiers by a large margin.

In summary, our paper makes the following contributions. i) we introduce a novel data
set of fine-grained car types that can serve as a test bed for future research on categorization
of geometric objects as well as training data for scene-level reasoning methods based on
fine-grained categories. ii) we propose two different variants of utilizing part detections
for fine-grained categorization of geometric objects, and demonstrate superior performance
compared to the state-of-the-art, and iii) to our knowledge, we are the first to attempt the
application of fine-grained category prediction for the benefit of 3D scene-level reasoning.
In particular, we show first results for the task of estimating the depth of objects relative to a
calibrated monocular camera based on fine-grained category predictions.

2 Related Work
Understanding visual scenes in their entirety has been an important focus of computer vision
research since its early days [4, 17, 19, 23]. It offers the prospect of removing false positive
predictions by imposing additional constraints on the layout of objects in the scene, either in
the form of scene priors (such as ground plane affinity [14, 31], mechanics [12], or human-
centric functions [13]) or the likelihood of observations, given the current hypothesis (such
as the agreement between predicted and observed object poses [1]). In this paper, we aim to
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expand upon the latter aspect, by providing fine-grained category predictions as additional
input cues to scene-level reasoning. These cues complement existing observations, such
as 2D object bounding boxes and viewpoint estimates. To our knowledge, no such use of
fine-grained categorization has been reported in the literature so far.

According to cognitive psychology [27], the presence or absence of parts is related to the
formation of basic-level object categories (a car has wheels, a chair does not), while specific
properties of parts are indicative of subordinate categories (a sports car has a different trunk
than a sedan). Several attempts have been made to exploit this principle for categorization,
ranging from discriminative part features over generative constellations [2], over histograms
of poselets [18], pose-normalized appearance features from geometric primitives [7], 3D
shape models [33], to part localization with humans in the loop [3]. Our approach goes
beyond these works in several ways: i) our part-based representation is based on the best
performing object class detector to date, the DPM, ii) as a result, we explicitly encode spatial
information ([18] does not), and iii) we do not require part annotations ([3, 7, 18, 33] do).

3 Fine-Grained Categorization with Deformable Parts

Our approach to fine-grained categorization is applicable for the wide range of object classes
that are characterized by shape and geometry rather than appearance. It follows the intuition
that object geometry, and hence, category affiliation, can be encoded in the layout of its con-
stituent parts. We thus design two different models that capture part layout. Both build upon
the deformable part model (DPM [10]), but represent part layout information differently.

3.1 Bank of Part Detectors

The basis for our first model is an existing DPM detector for the (basic-level) object class
of interest. For example, if the fine-grained task at hand is to distinguish between different
car types, the basis for our model is a car detector. While our method could be applied in
combination with any detector capable of generating dense response maps of part detections,
we chose the DPM since it has proven superior to other detectors for a variety of different
object classes, including the rigid ones that we are focusing on [6].

Assuming that the detector has been run on an input image, we propose to form features
from the generated part response maps, similar in spirit to object-bank [16]. Note that object-
bank uses responses of (massive amounts of) entire object class detectors, lending itself to
scene-classification problems that provide enough spatial support in terms of image area.
In contrast, we focus on fine-grained classification of individual objects, which are likely
to cover only small image regions, and expect to capture more fine-grained information by
using responses of individual part detectors. Furthermore, using only part detectors is more
efficient in terms of computation, since reasoning about pairwise deformation costs can be
spared. Concretely, we compute spatial pyramid (SP) [15] representations (1×1, 2×2, and
4×4 cells) at different scales over the response maps of all parts, over all components of
the DPM. For each SP cell, we memorize min and max responses (pooling), concatenate all
values into a single feature vector, and train a linear SVM with L2 loss and regularizer. In
the following, we refer to this model as part-bank (PB).
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3.2 Multi-Class Deformable Part Model

The second model constitutes a proper extension of the DPM [10], which we implement
based on its reformulation as a structured output prediction problem proposed by [24], from
which we borrow the notation in the following (we omit recapitulating the well-known orig-
inal DPM formulation [10]). Specifically, we phrase the DPM as a (latent) linear multi-class
SVM that can be coherently optimized for the multi-class problem, without the need for a
posteriori output coding, such as 1-vs-all or 1-vs-1 schemes [22]. In the following, we refer
to this model as structDPM.

The structDPM is trained from a set {xi,yi} of images xi and class labels yi ∈ {1, ...,K}.
Similar to [10], each class y is represented in the model with a set of n components {cy},
where n is a free parameter of the model. The structDPM is the union of components
across all classes, {c1} ∪ {c2} ∪ . . .∪ {cK}. The mapping of training examples to com-
ponents is latent, with the constraint that for every training example xi, only components
of class yi can be assigned to it. Each component c is composed of a dedicated root p0

c
and a set of deformable parts pk

c, the positions of which are aggregated in latent vari-
ables h = {pk

c}∪ c, together with the component assignment c. Each part is characterized
by a HOG [5] template Fk

c and a spatial deformation cost w.r.t. the root dk
c . For nota-

tional convenience we first stack all model parameters in a single vector for each com-
ponent c, βc =

(
F0

c ,F
1
c , . . . ,F

n
c ,d

1
c , . . . ,d

n
c ,bc

)
, where bc is a bias term, and further into a

single vector for an entire model β = (β1, . . . ,βM). The features are stacked accordingly:
Ψ(x,y,h) = (ψ1(x,y,h), . . . ,ψM(x,y,h)), with ψk(x,y,h) = [c = k]ψ(x,y,h) ([·] is Iverson
bracket notation) being the features computed for component k, where k ∈ {cy}. The vector
Ψ(x,y,h) is zero except at the c’th position, i.e., 〈β ,Ψ(x,y,h)〉 = 〈βc,ψc(x,y,h)〉. During
training, we optimize the following latent structured SVM objective:

min
β ,ξ≥0

1
2
‖β‖2 +C

N

∑
i=1

ξi

sb.t. ∀i, ȳ 6= yi : max
hi
〈β ,Ψ(xi,yi,hi)〉−max

h
〈β ,Ψ(xi, ȳ,h)〉 ≥ ∆(yi, ȳ)−ξi

where ∆ is a loss function, which we instantiate as ∆(y, ȳ)= [y 6= ȳ]. For both training and test,
we allow the root part to move inside the object bounding box by considering all hypotheses
which have an overlap of at least 0.4. At test time, we solve argmax(y,h)〈β ,Ψ(x,y,h)〉.

4 Experiments

In the following, we carefully analyze the performance of our models. To that end, we
introduce a novel data set of fine-grained car-types, and conduct experiments in two different
settings: first, we evaluate fine-grained categorization in isolation, as a standard multi-class
classification task (Sect. 4.2), comparing to state-of-the-art classifiers. Second, we explore
fine-grained categorization in the context of 3D scene understanding, showing promising
results for estimating object depth from fine-grained category predictions (Sect. 4.3).
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Figure 1: Our novel car-types data set (Sect. 4.1): (a) example images, (b) statistics, (c)
average images, (d) HOG features. (e) Comparison of depth estimation error (Sect. 4.3).
This figure is best viewed in the electronic version, with magnification.

4.1 Novel Fine-Grained Car Data Set

We introduce a novel data set of fine-grained car-types, which we will make publicly avail-
able upon publication (Fig. 1) 1. It consists of 1904 images of cars from 14 different cat-
egories (Fig. 1 (b)), downloaded from the internet. In particular, we queried google image
search with terms corresponding to the most frequently appearing sedans, SUVs, sports cars,
and compact cars, according to a car trading website. Downloaded images were manually
filtered for those that depict at least one car of the queried category in a prominent position.
Images are annotated with category labels, 2D bounding boxes, and a viewpoint estimate
in the form of the azimuth angle, binned to 5 degrees (we report results on the standard 45
degree binning in the experiments of Sect. 4.2).

Fig. 1 (a) gives sample images from 3 categories and 8 different viewpoint bins, cropped
to approximately the object bounding box. Fig. 1 (b) gives the number of images for each
category and viewpoint, together with the corresponding marginals (in parentheses). We note
that the data set is heavily biased w.r.t. viewpoints, which reflects the availability of images
we encountered during data collection. It proved almost impossible to collect more than a
handful of images for certain combinations of car-type and viewpoint. Fig. 1 (c) and (d)
highlight the challenge of the fine-grained classification problem: images of all categories
from a certain viewpoint are better aligned than images from a certain car-type across all
viewpoints (c), and differences in HOG feature space are hard to spot even visually (d). For
evaluation, we split the data set into 50% train, 25% val, and 25% test images.

1The data set will be publicly available under https://www.d2.mpi-inf.mpg.de/datasets.
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se

tu
p training car-type car-type × vp car-type × vp car-type × vp

test car-type car-type vp car-type × vp
# categories 14 14 8 104

m
et

ho
d

i)
HOG [5] 77.5 81.3 87.8 75.6
LLC [29] 84.5 82.6 84.2 72.9

ii)
PB(DPM) (ours) 84.0 84.9 88.0 77.1

PB(mvDPM) (ours) 85.3 87.0 88.2 79.4
PB(structDPM) (ours) 89.9 85.5 87.6 77.7

iii) structDPM (ours) 93.5 88.2 88.4 79.8

iv)
HOG+LLC+PB(mvDPM) (ours) 89.1 88.9 89.9 81.3
HOG+LLC+structDPM (ours) 90.3 86.3 88.9 79.4

Table 1: Comparison of classification accuracy on the car-types data set in %, including
HOG [5] and LLC [29]. Best individual and combined methods are shown in bold font.

4.2 Fine-Grained Categorization

We first evaluate our fine-grained categorization in isolation, as a standard multi-class clas-
sification task. We train on the designated train data defined by our data set, use val for pa-
rameter optimization, and test on test. For training and test, classifiers are provided images
as well as ground truth object bounding boxes, since the task is classification, not detection.

Methods. Tab. 1 gives the results for fine-grained categorization on our car-types data set,
measuring the accuracy of classification as the fraction of correctly classified instances in the
test set. It compares four different groups of approaches in its sections: i) baselines, ii) part-
bank, iii) structDPM, and iv) combinations of i), ii) and iii). As baselines (i), we consider
a HOG [5] template with a linear SVM, and locality constrained linear coding (LLC [29]),
which is one of the most powerful image-level classifiers to date (among the state-of-the-art
on Caltech-101 [8] and -256 [11] classification benchmarks). For ii), we compare our part-
bank (PB) computed on response maps of the DPM [10] car detector as provided by the au-
thors [9] (PB(DPM)), and part-bank computed on response maps of the bank of 8 viewpoint-
dependent DPMs proposed by [1] (PB(mvDPM)). Since the latter explicitly distinguishes
between different viewpoints, we expect the corresponding part response maps to be more
informative than the ones of PB(DPM). We also add part-bank computed on response maps
of our structDPM (PB(structDPM)). For iii), we train our structDPM with 2 components
per fine-grained category. For iv), we consider stacking-based combinations of the baselines
with the best performing part-bank method PB(mvDPM) (HOG+LLC+PB(mvDPM)) and
structDPM (HOG+LLC+structDPM).

Settings. Columns of Tab. 1 correspond to different evaluation settings, characterized by
the set of class labels provided to the different methods during training: we distinguish car-
type (col. 1) and both car-type and viewpoint (col. 2-4). We do the same for testing, which
ranges from predicting only car-type (col. 1, 14 class problem) to predicting both car-type
and viewpoint (col. 4, 104 classes). Col. 2 and 3 marginalize the predictions of col. 4 over
viewpoint (col. 2, 14 classes) and car-type (col. 3, 8 classes), respectively. Note that the data
set does not contain enough images for 8 particular combinations of car-type and viewpoint,
which leaves us with 104 classes for the car-type × vp setting.
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Car-type. In Tab. 1 col. 1, we observe a clear ordering of performance. While HOG per-
forms moderately (77.5%), it is outperformed by LLC (84.5%) by a large margin (7%).
Equally, our PB(DPM) improves over HOG by 6.5%, performing on par with the state-of-
the-art LLC. Enriching part-bank with viewpoint information in fact improves performance
by 1.3% (PB(mvDPM), 85.3%), and is significantly increased (5.9%) by using parts opti-
mized for the classification problem (PB(structDPM), 89.9%). Using the structDPM end-to-
end further increases performance to a striking 93.5%, which is a 9.0% improvement to the
best baseline method LLC, and can not be attained by either of the combined methods.

Car-type × vp. In Tab. 1 col. 4, we observe a general drop in performance compared to
col. 1, due to the increased difficulty of the classification problem (104 vs. 14 classes). The
performance of the baselines is reversed – the rigid HOG (75.6%) apparently benefits more
from the viewpoint alignment of the training data than LLC (72.9%). Both baselines are
consistently outperformed by all variants of part-bank. Again, adding viewpoint information
helps (increase from 77.1% for PB(DPM) to 79.4% for PB(mvDPM)). PB(structDPM) per-
forms on par (77.7%). As in col. 1, the best performance for a single method is achieved
by structDPM (79.8%), which is remarkable for a 104 class problem. Combining methods
improves marginally (to 81.3% for HOG+LLC+PB(mvDPM)).

Marginalizing over viewpoints (col. 2), we observe an increase in performance compared
to directly predicting the car-type (col. 1) for some methods (HOG +3.8%, PB(DPM) +0.9%,
PB(mvDPM) +1.7%), and a decrease for others (LLC -1.9%, PB(structDPM) -4.4%, struct-
DPM -5.3%, HOG+LLC+PB(mvDPM) -0.2%, HOG+LLC+structDPM -4.0%).

Marginalizing over car-types (col. 3), the performance largely follows the ordering of
col. 4. Both baselines (HOG 87.8%, LLC 84.2%) are consistently outperformed by our part-
bank classifiers (PB(DPM) 88.0%, PB(mvDPM) 88.2%, PB(structDPM) 87.6%), topped
by our structDPM (88.4%) and the combined classifiers (HOG+LLC+PB(mvDPM) 89.9%,
HOG+LLC+structDPM 88.9%). In comparison to an existing data set for viewpoint classi-
fication into 8 azimuth angle bins [26], where classification is tied to an even more difficult
detection setting, the best achieved accuracies on our new data set are considerably worse
(89.9% vs. 97.9% [24]). This suggests that our data set is also a more challenging test bed
for viewpoint classification.

Summary. We conclude that both part-bank and structDPM outperform the baselines HOG
and LLC by significant margins, in both car-type and the even more challenging car-type ×
vp settings. While the computationally more expensive structDPM shows a clear benefit
in the former setting, PB(mvDPM) offers a good compromise between computational effi-
ciency at training time (since it relies on pre-trained detectors) and performance, in particular
for the latter setting, where it loses only 0.4% compared to structDPM. Combining methods
hardly improves, suggesting that our methods are not complementary to HOG and LLC, but
rather subsume information encoded by either of them.

4.3 3D Geometric Reasoning

While Sect. 4.2 evaluates our fine-grained categorization in isolation, we now move on to the
more challenging task of applying it in the context of a 3D scene understanding task, on a re-
cently proposed street scene data set [1, 21]. To that end, we design an idealized experiment,

Citation
Citation
{Savarese and Fei-Fei} 2007

Citation
Citation
{Pepik, Stark, Gehler, and Schiele} 2012

Citation
Citation
{Bao and Savarese} 2011

Citation
Citation
{Pandey, McBride, and Eustice} 2011



8 STARK ET AL.: FINE-GRAINED CATEGORIZATION FOR 3D SCENE UNDERSTANDING

(a)
2011_Ford_F!150

2010_Chevrolet_Corvette_Grand_Sport

(b)
2010_Chevrolet_Corvette_Grand_Sport

2011_Ford_F!150 2011_Ford_F!150

(c) 2011_Honda_CR!V

2011_Chevrolet_Camaro
2012_Honda_Civic_Coupe

2012_Honda_Civic_Coupe

2011_Chevrolet_Camaro

2011_Hyundai_Sonata

(d) 2011_Hyundai_Sonata2010_Volkswagen_New_Beetle
2011_Ford_Escape2012_Toyota_Camry 2011_Chevrolet_Camaro

(e)
2011_Chevrolet_Camaro

2011_Honda_CR!V
2011_Jeep_Wrangler2011_Ford_F!1502011_Chevrolet_Camaro

2011_Chevrolet_Camaro

(1) (2) (3) (4)
Figure 2: Depth estimation results. (1) 2D GT BBs with predicted fine-grained category
labels, (2) estimated 3D BBs when using fine-grained category information, (3) point cloud
top view for fine-grained, (4) for mean metric sizes. Green: improvement, red: failure. This
figure is best viewed in the electronic version, with magnification.

in which we isolate the contribution of fine-grained category information from possible de-
ficiencies of other system components (such as object localization). While this experiment
constitutes a best case evaluation, it highlights that fine-grained category information has the
potential to provide valuable constraints in a scene-level reasoning context.

Data set. We use the Ford campus vision and lidar data set [1, 21] for testing, as it provides
calibrated camera images as well as registered point cloud data that can serve as the basis for
metric 3D evaluation. Applying fine-grained categorization on this data set is challenging,
as its statistics deviate largely from our car-types data set used for training, both w.r.t. the
imagery (images are taken from an omni-directional camera mounted on a car roof, resulting
in image distortions despite correction, and more elevated views of nearby objects) and the
objects depicted (cars are not restricted to the types in our data set, and they appear at largely
varying, often tiny, scales and are heavily occluded). The data set consists of a number of
distinct street scenes, from which we use the test set defined by [1], consisting of 141 images
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in total. Fig. 2 col. (1) shows examples. We manually annotate the corresponding point
clouds with 3D bounding boxes for all visible car objects above a certain size.

Task. We consider the task of predicting the depth of a given object (its distance from
the camera) from a single view of the calibrated camera. For that purpose, we are given
the object’s ground truth 2D bounding box (which we derive from our 3D annotations), its
ground truth viewpoint (its azimuth angle), and its estimated physical extent (length, width,
and height) as an input. This task is based upon the fact that the depth of an object is a
function of its extent, once the other parameters (projection to the image plane and rotation)
are fixed.

To identify this depth, we cast a ray from the camera center through the center of the 2D
object bounding box in the image plane. We then instantiate a 3D bounding box along that
ray, aligned to the ground plane (which is enabled by the camera calibration including the
up-vector of the ground plane). We then size the box according to our fine-grain category
estimate, and rotate it to match the ground truth azimuth. Finally, we slide it along the
ray, such that the overlap between its 2D projection and the ground truth 2D bounding box
is maximized. Maximization is done via exhaustive search over discrete positions on the
ray. Fig. 2 visualizes 2D object bounding boxes (col. (1)) together with their estimated 3D
bounding boxes (col. (2)).

Methods. We compare two different methods for estimating the physical extent of an ob-
ject, which serves as the basis for computing its depth. For the first one, we determine the
metric sizes of all car-types in our data set (length, width, height) from internet product in-
formation. We then apply our fine-grained categorization (structDPM) to all 2D ground truth
bounding boxes in the test set, and chose the size of an instantiated 3D object bounding box
according to the metric information for the predicted fine-grained category. The second one
is our baseline: it ignores fine-grained categories, and instantiates all 3D object bounding
boxes with the mean over all metric sizes in our car-types data set.

Results. Fig. 1 (e) gives the results for depth estimation, comparing the performance of us-
ing fine-grained category information (blue) with using the mean over all metric sizes (red).
It plots the recall of objects with correctly estimated depth according to an error threshold (in
meters) vs. that threshold. We observe that using fine-grained category information in fact
results in a noticeable improvement in the high precision region of the curve, up to an error
of 1.5m (the blue curve stays consistently above the red curve). Beyond that point, the mean
over car sizes proves to be more robust than our fine-grained category predictions. This is
understandable, given that the test set is quite different from our car-types data set used for
training, in particular w.r.t. the occurring car-types. Nevertheless, the total average error for
fine-grained category predictions is only 4 cm larger than for the mean car sizes.

Fig. 2 visualizes example results. Green arrows highlight improved depth estimates re-
sulting from fine-grained category information, red arrows mark failure cases. In (a), we
correctly predict a Ford F150, which is considerably larger than the mean car size, leading to
a more accurate depth estimate. (b) shows the same effect with a Chevrolet Corvette Grand
Sport. In (c), we correctly predict smaller cars than the mean (Hyundai Sonata and Honda
Civic Coupe), also in (d), where we predict a VW New Beetle (which is wrong, but the actual
car is small, and can be mistaken for a Beetle). In (e), we mistake the marked car for being
an F150, leading to an overestimated size and hence depth.
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5 Conclusion
We have considered fine-grained categorization of geometric object classes, aiming to use
fine-grained category predictions in a 3D scene-understanding context. We introduced two
different methods that utilize part detectors to encode category-specific information, which
we have shown to outperform baseline classifiers on a newly proposed car-types data set by a
significant margin. We further showed first results on using fine-grained category predictions
for estimating object depth, which we consider a valuable starting-point for future research.
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