Fine-Grained Categorization for 3D Scene Understanding
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Basic-level object category recognition has made remarkable progress
over the last decade, both in image-level categorization and bounding box
localization settings [3]. More recently, the recognition of finer-grained,
subordinate categories is receiving increased attention [1, 2, 4, 7, 8, 11,
12]. It is deemed challenging due to the need to capture subtle appear-
ance differences between categories while at the same time maintaining
robustness to intra-category variations induced by changes in pose and
viewpoint. As a consequence, the focus of previous work has been mostly
on object categories and methods that favor discrimination by strong local
appearance cues (such as random color image patches for birds [12]) or
global image statistics (such as color histograms for flowers [8]).

Our paper goes beyond previous work on fine-grained categorization
in two ways. First, in addition to exploring the task of fine-grained cate-
gorization itself, we suggest the use of fine-grained category predictions
as an input for higher-level reasoning. This is based on the observation
that fine-grained categories can encode, among other aspects, information
about metric object sizes, which can in turn provide geometric constraints
for scene-level reasoning. Accordingly, we focus our attention on rigid,
geometric objects that can provide, if correctly categorized, reliable met-
ric size estimates, and introduce a novel dataset ! of fine-grained car types
as a test bed for our approach (Fig. 1). This data set is annotated with 2D
bounding boxes, viewpoint estimates, car types, and additionally includes
metric object sizes (length, width, and height) for geometric reasoning.

Secondly, we design a fine-grained object class representation that
captures variations in object shape and geometry rather than appearance [8,
12], in order to match the object class of interest. To that end, we in-
troduce two different variants of utilizing part detections as indicators
of object geometry, of varying complexity. Both are based on the best-
performing object class detector to date, the DPM [5].

Novel car-types data set. We introduce a novel data set of fine-grained
car-types, consisting of 1904 images of cars from 14 different categories
(Fig. 1), annotated with category labels, 2D bounding boxes, and a view-
point estimate (azimuth angle binned to 5 degrees).

Fine-grained categorization. Our approach follows the intuition that
object geometry, and hence, category affiliation, can be encoded in the
layout of its constituent parts. We thus design two different models that
capture part layout, both building upon the DPM [5]: i) part-bank, a fea-
ture derived from response maps of a basic-level object class detector,
similar in spirit to object-bank [6], and ii) structDPM, a multi-class variant
of the DPM [10] that directly optimizes for fine-grained categorization.
Our experiments show that both models outperform state-of-the-art clas-
sifiers by significant margins in fine-grained categorization. structDPM
outperforms part-bank, at the cost of higher computational complexity.

3D Geometric reasoning. We demonstrate the potential of fine-grained
category predictions to aid 3D geometric reasoning in a first, idealized
experiment: the task is to predict the depth of a given object (its distance
from the calibrated camera) from a single view, based on its 2D bounding
box and metric size information derived from its predicted fine-grained

!'The data set will be publicly available under https://www.d2.mpi-inf.mpg.de/datasets.
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Figure 1: Example images from our novel car-types data set with fine-
grained category and viewpoint (azimuth angle) annotations.
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Figure 2: Depth estimation results. (1) 2D GT BB’s with predicted fine-
grained categories, (2) estimated 3D BBs for fine-grained categories, (3)
point cloud top view for fine-grained, (4) for baseline. Green arrows:
improvement. Best viewed in the electronic version, with magnification.
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category (Fig. 2). Our experiments on a public data set [9] confirm the
benefit of these predictions over a baseline in the high precision domain.
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