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Abstract

In this paper, a 3D left ventricle (LV) tracking framework utilizing Doo-Sabin sub-
division surface models is extended with biomechanically constrained state transitions.
First, an isoparametric finite element analysis (FEA) method for Doo-Sabin surface mod-
els is provided. The isoparametric FEA produces a stiffness matrix for a given endo-
cardial model directly, eliminating inconvenient remodeling/meshing procedures com-
monly conducted prior to FEA. The computed model might lead to inaccurate deforma-
tion modes during the tracking due to hypothesized model shape and FEA parameters.
Accordingly, we introduce a statistical model improvement approach for modifying the
model shape and its stiffness matrix using experimentally observed endocardial surface
variations. Finally, the state prediction stage of the Kalman tracking framework is formu-
lated to perform constrained tracking. Comparative analyses show that the biomechanical
constraints can significantly improve the endocardium tracking accuracy of the models
with high control node resolutions.

1 Introduction
This paper considers the problem of endocardial border tracking in 3D+T echocardiography
recordings. This is a challenging task due to reasons including speckle noise, shadowing,
and the existence of intra-cavity structures (e.g. chordae tendineae, papillary muscles and
valves) [15]. Furthermore, real-time detection of endocardial borders might be desirable
during invasive procedures and intensive care applications.
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State-space analysis using Kalman filtering can be employed for the detection of left
ventricle (LV) structures in time-dependent recordings. A Kalman filtering framework for
tracking B-spline models was first introduced by Blake et al. [4]. This framework was later
utilized for rapid tracking of LV in long-axis 2D echocardiography in [10, 11]. Orderud et al.
extended the approach with the use of Doo-Sabin subdivision models for real-time tracking
of 3D echocardiography recordings [14]. These studies took advantage of compact model
representations for rapid tracking, but did not utilize physical properties to constrain model
deformations. Liu et al. introduced a biomechanical-model constrained state-space anal-
ysis framework for the tracking of short-axis 2D echocardiography recordings [13]. Their
study used dense Delaunay triangulated models and employed basic tri-nodal linear elements
during the finite element analysis (FEA). Due to the triangulated high resolution model rep-
resentations, it offered a computationally expensive solution.

The motivation for our study is to combine the compact model representations with
biomechanical constraints for rapid and accurate tracking. To our knowledge, no work has
been published on the biomechanically constrained tracking of subdivision surfaces using
a Kalman filter. Accordingly, we extend the real-time Kalman tracking framework defined
in [14] by employing biomechanically constrained state transitions. First, the isoparamet-
ric FEA method for Doo-Sabin surface models [7] is briefly described. This step enables
the computation of a stiffness matrix for a given Doo-Sabin endocardial model using shell
elements without changing the model geometry. It also eliminates the inconvenient remodel-
ing/meshing procedures commonly conducted prior to FEA. However, the computed model
might lead to inaccurate deformation modes due to hypothesized model shape and FEA pa-
rameters (e.g. Young’s modulus, Poisson’s ratio). The statistical model improvement stage
addresses this problem by employing Control Point Distribution Models (CPDM) [6] and
Baruch and Bar-Itzhack direct matrix modifications (BBDMM) [2]. It generates a more ac-
curate model shape, and restricts model’s deformation modes using experimentally observed
endocardial surface variations. To compute CPDM, we introduce a regressive conversion
method from ground-truth endocardial surface meshes to Doo-Sabin surface representations.
The mean endocardial surface model and its modes of deformation are found using Doo-
Sabin surface representations that are converted from a training dataset. The mean shape
is utilized as the new model shape, and the modes of deformation are used for modifying
the model stiffness matrix in BBDMM method. Finally, the state prediction stage of the
Kalman tracking framework is formulated to perform biomechanically constrained tracking.
In the results section, endocardial surface tracking quality is compared among (1) Doo-Sabin
surface models with different control node resolutions, (2) biomechanically constrained and
non-constrained state transitions, and (3) the systems employing statistically improved and
not improved Doo-Sabin models.

2 Isoparametric Formulation of Doo-Sabin Surface
Models

The tracking framework introduced in [14] is built around a deformable Doo-Sabin subdi-
vision model parametrized by a set of control nodes with associated displacement direction
vectors. For the FEA of Doo-Sabin endocardial models, we propose to use an isoparametric
method from [7] as it (1) eliminates the need for meshing tools by employing a unified geo-
metric representation for the design and analysis, and (2) generates a stiffness matrix that is
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directly defined for the control node displacements of the model.
A Doo-Sabin surface is a type of a subdivision surface that generalizes bi-quadric B-

spline patches to an arbitrary topology [8]. It is defined as the limit surface of a recursive
subdivision process. Each limit surface position of a patch is uniquely described using para-
metric patch coordinates (ξ ,η) that vary between 0 and 1. The basis functions map patch
coordinates to physical coordinates by,

y =
n

∑
i=1

bi (ξ ,η)qi, (1)

where (1) n gives the total number of control nodes for a given patch, (2) bi is the basis
function for the ith control node of the patch, (3) qi gives the physical coordinates of the ith

control node, and (4) y holds the mapped physical coordinates. Please refer to [14] for the
derivation of the basis functions.

The basis functions can also be utilized for defining isoparametric solid shell elements
during the FEA [7]. The degenerated solids based approach, proposed in [1], can be em-
ployed for the shell elements with shape functions:

y =
n

∑
i=1

bi (ξ ,η)

{
qi + t

ζ

2
v3i

}
, (2)

where (1) [v1i, v2i, v3i] defines orthogonal axes at the ith control node of the patch, in which
v3i gives the surface normal direction, (2) t gives the shell thickness, and (3) a parametric
patch coordinate ζ traverses on the surface normal direction. Hence, each surface patch is
represented by a shell element with a thickness. The displacement vector u of any point in
the element is given by,

u =
n

∑
i=1

bi (ξ ,η)

{
ui + t

ζ

2
[v1i,−v2i]

[
αi
βi

]}
, (3)

where (1) ui = [ui, vi, wi]
T is the displacement vector for the ith control node, and (2) αi

and βi are the scalar rotations in radians around v1i and v2i axes respectively. During the
FEA of the shell structures, a local coordinate system (x′, y′, z′) of the element needs to be
determined. By applying a linear interpolation, an orthogonal set of local coordinate axes
for any point in the element are given by,

v3 (ξ ,η) =
∑

n
i=1 bi (ξ ,η)v3i

|∑n
i=1 bi (ξ ,η)v3i|

, v1 (ξ ,η) =
h×v3

|h×v3|
, v2 (ξ ,η) = v3×v1, (4)

with h giving an arbitrary vector that satisfies h 6= v3 (ξ ,η).
The strain vector ε =

[
εx′ , εy′ , γx′y′ , γx′z′ , γy′z′

]T is described by the first partial derivatives
of the local displacement vector u′ = [u′, v′, w′]T as

ε =
[

∂u′
∂x′ ,

∂v′
∂y′ ,

∂u′
∂y′ +

∂v′
∂x′ ,

∂u′
∂ z′ +

∂w′
∂x′ ,

∂v′
∂ z′ +

∂w′
∂y′

]T
, (5)

where (1) εx′ and εy′ are the normal strains in x′ and y′ directions, and (2) γx′y′ , γx′z′ and γy′z′

are the shear strains in the x′y′, x′z′ and y′z′ planes respectively. The relation between the
strain and stress (σ ) vectors can be formed using Generalized Hooke’s Law as σ = Dε , in
which the material matrix D is defined using Young’s modulus and Poisson’s ratio [1].

Citation
Citation
{Doo and Sabin} 1978

Citation
Citation
{Orderud and Rabben} 2008

Citation
Citation
{Dikici, Snare, and Orderud} 2012

Citation
Citation
{Ahmad, Irons, and Zienkiewicz} 1970

Citation
Citation
{Ahmad, Irons, and Zienkiewicz} 1970



4 DIKICI ET AL.: BIOMECHANICALLY CONSTRAINED DOO-SABIN SURFACE TRACKING

Figure 1: (A) The limit surface of an arbitrary patch and its subdivisions are shown in green,
the control nodes for the green patches are shown in yellow. Subdivided patches define the
exact same limit surface as the original patch. (B) The geometry of a shell element for the
green patch from (A-1) is shown; each patch is modeled by a shell element.

Using a variational formulation, the stiffness matrix of an element is given by:

Ke =

˚
BT DBdxdydz, (6)

where B (strain-displacement matrix) relates the strains to the control node displacements
(δ ) using ε = Bδ . To compute B, firstly the components of ε are found as described in [7].
Next, B can be found solving ε = B [δ1,δ2, . . .δn]

T where δi = [ui, vi, wi, αi, βi]
T . The in-

finitesimal volume computed in physical coordinates can be expressed in terms of parametric
coordinates as dxdydz = |J|dξ dηdζ , in which 3×3 Jacobian matrix J gives the first-order
partial derivatives of physical coordinates with respect to parametric coordinates. Finally,˝

BT DB |J|dξ dηdζ can be numerically estimated using Gauss Legendre quadrature rules.
Using two samples in ζ direction and minimum four samples in both ξ and η directions is
sufficient for thin shell element stiffness matrix calculations [1]. Computed element stiffness
matrices can be assembled into a model stiffness matrix K following a standard procedure.

The resolution of a given Doo-Sabin surface model can be adjusted by basis refinements,
without changing the model geometry or its parametrization (See Figure 1). A Doo-Sabin
surface refinement produces a model with a higher number of elements, which provides an
increased physical simulation accuracy during FEA. The convergence properties of Doo-
Sabin shell elements are reported in [7].

3 Statistical Model Improvements
An endocardial model designed using hypothetical shape and material properties (e.g. Young’s
modulus and Poisson’s ratio) might lead to poor tracking accuracy. Yet, the identification of
the optimal properties requires a considerable amount of user input and time, which might
not be manageable for a complex structure such as the LV [3]. We propose to use a statistical
model improvement method that (1) learns the mean model shape and its deformations using
a training dataset, and (2) updates the model shape and the stiffness matrix directly using the
learned information.

For producing a statistical endocardial Doo-Sabin surface model, firstly a conversion pro-
cedure between 3D ground-truth endocardial surface segmentations and Doo-Sabin surface
representations needs to be described. We propose a regressive approach for this task.
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Figure 2: (A) Doo-Sabin surface representation produced by the classical tracker with land-
mark (yellow) and control (red) points, which does not fit at apical region, (B) ground-truth
surface segmentation, (C) ground-truth landmark points, and (D) updated Doo-Sabin surface
representation using MLE based conversion are represented.

A dense set of landmark points (m� n), which are evenly spread around a patch, is
given by L = {(ξ1,η1) , (ξ2,η2) , . . . , (ξm,ηm)}. The tracker defined in [14], referred as the
classical tracker, maps L on to a set of Cartesian coordinates as (ξi,ηi)→ yi

(ρ,τ), where (1)
ρ ∈ {1,2, . . .r} identifies a recording, and (2) τ ∈ [0 : end-systole, 1 : end-diastole] gives the
temporal cardiac cycle position. Each yi

(ρ,τ) can be updated using a normal displacement (in
v3 direction from Equations 4) to a ground-truth surface point ỹ(b,τ)i . Next, m equations that
relate unknown patch control node positions, q(ρ,τ), and the ground-truth surface points can
be defined as,

ỹ(ρ,τ)i =
n

∑
j=1

b j (ξi,ηi)q(ρ,τ)
j , 1≤ i≤ m. (7)

The equations collected from all surface patches can be put into a matrix form:

Ỹ(ρ,τ) = FQ(ρ,τ)+W, (8)

where (1) F is a design matrix holding the basis function values, (2) Q(ρ,τ) is a model control
node matrix, and (3) W is a mapping error matrix. Assuming white mapping errors, the
maximum likelihood estimator (MLE) for Q(ρ,τ) is found by Q̂(ρ,τ) =

(
FT F

)−1 FT Ỹ(ρ,τ)

[12]. A Doo-Sabin surface representation with the control nodes given by Q̂(ρ,τ) fits onto the
ground-truth endocardial surface segmentation for the recording ρ at τ (see Figure 2).

After estimating Doo-Sabin surface representations for all training recordings at each car-
diac cycle position, CPDM can be computed. First, the surface representations are aligned
utilizing the global state information of the classical tracker, which keeps the model trans-
lation and rotation with respect to an initial model state [14]. Next, the mean model repre-
sentation is computed using the aligned models; Q̄ gives the mean model’s control nodes.
Finally, the control node covariance matrix V about Q̄ is found. The t eigenvectors of V,
S= [s1, s2, . . . , st ], corresponding to the largest t eigenvalues Ω2

pdm = diag
(
ω2

1 , ω2
2 , . . . , ω2

t
)
,

give the observed modes of variation (or deformation) for the model [6].
The Doo-Sabin model employed in the classical tracker can be improved using (1) the

mean model representation, and (2) the observed modes of deformation. First, the model
control nodes are modified as the mean model control nodes Q̄, hence the modes of defor-
mation of the observed and computed models are comparable. Then, the model stiffness
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matrix for the modified model is found using the isoparametric formulation introduced in
the previous section as K′ . Modal Analysis can be performed to find deformation modes of
the modified model by solving,

K
′
Φ f em = MΦ f emΩ

2
f em, (9)

where (1) M is a mass matrix assumed as an identity matrix in our study, (2) Φ f em is the
eigenvector matrix of M−1K′ and represents the deformation modes, and (3) Ω2

f em is a diag-
onal matrix of the associated eigenvalues. It is desirable to have similar deformation modes
as the observed ones given by CPDM.

The BBDMM is a direct matrix modification method [2] that makes minimal amount of
modifications on the original stiffness matrix to produce desired deformation modes. In this
study, it is utilized to make minimal modifications to K′ by solving,

minKopt

∥∥∥M−1/2
(

Kopt −K
′
)

M−1/2
∥∥∥

F
,

s.t. KoptS = MSΩ
2
pdm, Kopt = KT

opt , (10)

where ‖·‖F is the Frobenius norm. With the assumptions of (1) K′ is symmetric, (2) S and
MSΩ2

pdm are both full rank, (3) ST MSΩ2
pdm is symmetric and non-singular, and (4) M is non

singular such that Rank
(
MT MS

)
= Rank

(
MSΩ2

pdm

)
, the unique solution to Kopt can be

found as,

Kopt = K
′
+
(

Y−K
′
S
)(

YT S
)−1 YT +Y

(
ST Y

)−1
(

Y−K
′
S
)T

−Y
(
YT S

)−1
(

Y−K
′
S
)T

S
(
YT S

)−1 YT , (11)

where Y = MSΩ2
pdm [3], and Kopt is the optimally modified stiffness matrix for the endo-

cardial model. Please note that S gives the t most prominent deformation modes for Kopt :
the major deformation modes produced by Kopt are similar with the observed modes learned
from a training dataset.

4 Tracking Framework
The tracking framework represents the shape and pose deformations by a composite trans-
form, where local shape deformations are obtained by moving control nodes in the subdivi-
sion model together with a global transformation that translates, rotates and scales the whole
model. This leads to a composite state vector x =

[
xT

g , xT
l

]T , consisting of ng global and nl
local parameters.

The tracking framework consists of five separate stages, namely the (1) state prediction,
(2) evaluation of tracking model, (3) edge measurements, (4) measurement assimilation,
and (5) measurement update. The biomechanical constraints can be enforced in the state
prediction stage [13], which is further elaborated in this section. A more detailed discussion
on the other stages of the framework can be found in [14].
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The control node displacements of a Doo-Sabin surface model can be formulated under
the principle of minimal energy using ordinary differential equation as,

Mü+Cu̇+Ku = 0, (12)

where (1) u = [u1, u2, . . . , up]
T gives the normal displacements for a model with p control

nodes, and (2) C is a Rayleigh damping matrix, which can be found by C = αM+βK with
small weighting constants α and β . Accordingly, a continuous-time linear time-invariant
stochastic system can be derived as ẋ(t) = Acx(t), where

x [t] =
[

u(t)
u̇(t)

]
, Ac =

[
0 I

−M−1K −M−1C

]
. (13)

This system can be discretized as x [k+1] = Adx [k], where (1) x [k] =
[
u [k]T v [k]T

]T
with

v [k] denoting the velocities of the control nodes at time step k, and (2) Ad = eAcΓ where
Γ = 1 gives the unit sampling interval used in our study. Ad can be decomposed as,

Ad =

[
A00 A01
A10 A11

]
, (14)

where A00, A01, A10 and A11 are p× p sub-matrices. Assuming v [k] ≈ u[k]−u[k−1]
Γ

, the
motion model can be written in terms of the last two successive states as,

u [k+1] =
[
A00 +Γ

−1A01
]

u [k]+
[
−Γ
−1A01

]
u [k−1] . (15)

In [14], control nodes’ normal displacements give the system local states; xl = u. Hence,
Equation 15 can be directly plugged into the joint motion model proposed in [14] by,

x̄ [k+1] =
[

Rg 0
0 Rl

(
A00 +Γ−1A01

) ] x̂ [k]+
[

0 0
0 Rl

(
−Γ−1A01

) ] x̂ [k−1] , (16)

where (1) x̄ [k+1] is the predicted state for the time step k+1, (2) x̂ [k] is the estimated state
from the time step k, and (3) Rg and Rl are the regularization matrices for the global and
local state parameters respectively.

5 Results
3D echocardiography was performed on 10 healthy subjects and 19 subjects with recent first
time myocardial infarction, using a Vivid 7 (26 recordings) or a Vivid E9 (3 recordings)
ultrasound scanner (GE Vingmed Ultrasound, Norway) with a matrix array (3V) transducer.
The endocardial border segmentation of the recordings was performed by a trained medical
doctor using a semi-automatic segmentation tool (4D AutoLVQ, GE Vingmed Ultrasound,
Norway).

For the initial FEA, the shell thickness, Young’s modulus and Poisson’s ratio were set as
8mm, 75000Pa and 0.47 as proposed in [13]. For the CPDM based model updates, a set of
441 landmark points evenly spread around the model was used. The observed modes of de-
formation were represented using five eigenvectors (t = 5) corresponding to the five largest
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Figure 3: Not-refined, refined and double-refined Doo-Sabin surface models (A) for the
noBC and BCnoI , and (B) BCwithI setups are represented. For the BCwithI, control node
positions are updated using the mean model computed by CPDM.

eigenvalues, which described≥ 90% of the experimentally observed endocardial shape vari-
ations. The Rayleigh damping constants of the tracker were set as α = β = 0.1.

The Kalman tracking framework was evaluated for three different configurations:

1. The system with no biomechanical constraints (noBC): it tracks a Doo-Sabin surface
model using a tracker with no biomechanical constraints. This setup is identical with
the classical tracker [14].

2. The system with biomechanical constraints and no statistical model improvements
(BCnoI): it tracks a Doo-Sabin surface model using a tracker with biomechanically
constrained state transitions, as described in Section 4. The model’s stiffness matrix
was computed using the isoparametric FEA method from Section 2.

3. The system with biomechanical constraints and statistical model improvements (BCwithI):
it tracks an improved Doo-Sabin surface model using a tracker with biomechanically
constrained state transitions. The improved model has a modified shape and a stiffness
matrix as described in Section 3.

Each configuration was executed with not-refined (9 nodes), refined (34 nodes) and double-
refined (136 nodes) Doo-Sabin surface models represented in Figure 3. noBC and BCnoI
setups were tested using all 29 recordings directly. As BCwithI requires a training with a
pre-segmented dataset, it was tested via leave-one-out cross-validation [9]. The error mea-
surements including the (a) absolute surface point error giving the average absolute distance
of each predicted surface point to ground-truth surface, (b) squared surface point error giv-
ing the average squared distance of each predicted surface point to ground-truth surface, and
(c) absolute volume error giving the average of predicted surface’s absolute volume errors
are given in Figure 4. Signed surface error polar plots, showing the average signed distances
between the predicted and ground-truth surfaces using 17-segment model of the American
Heart Association [5], are represented in Figure 5. There were no significant differences be-
tween the segmentation performances for the subjects with and without infarction; therefore,
the evaluation results are reported for all recordings without any further classification.

The tracking framework is implemented in C++, and processes each frame in 2ms with
not-refined, 3.4ms with refined and 30.6ms with double-refined models when executed on a
2.80 GHz Intel Core 2 Duo CPU. There are no execution time differences between the noBC,
BCnoI and BCwithI setups as the stiffness and state transition matrices are computed only
once for each model.

Citation
Citation
{Orderud and Rabben} 2008

Citation
Citation
{Hastie, Tibshirani, and Friedman} 2009

Citation
Citation
{Cerqueira, Weissman, Dilsizian, etunhbox voidb@x penalty @M  al.} 2002



DIKICI ET AL.: BIOMECHANICALLY CONSTRAINED DOO-SABIN SURFACE TRACKING 9

Figure 4: (A) Absolute surface point error (in mm) , (B) squared surface point error (in
mm2), and (C) absolute volume error (in percentages) for the Kalman tracking framework
with noBC, BCnoI, and BCwithI setups for non-refined, refined and double-refined Doo-
Sabin model tracking.

6 Discussion and Conclusion

In this study, we extended the real-time Doo-Sabin surface models based Kalman tracking
framework with biomechanical constraints. The introduced method is (1) practical; the com-
puted models can be directly used in a Kalman tracking framework by implementing a few
modifications in the state prediction stage, (2) useful since it improves the tracking accuracy
without introducing additional run-time complexity, (3) yet novel as the biomechanically
constrained subdivision surfaces have not been employed in a Kalman tracker prior to our
study.

Our analyses showed that the biomechanical constraints are necessary especially when
the tracked model has a high control node resolution. This is due to the fact that as the model
complexity increases the tracker can benefit more from a spatial regularization, which is
provided by biomechanical constraints. Hence, we can observe that the BCnoI setup allows
tracking quality to be stabilized over model resolution levels (see Figure 4 and Figure 5 row-
2). The statistical model improvements take advantage of higher model resolution levels as
(1) the model node updates provide a more realistic model shape to perform tracking, and (2)
deformation modes learned from CPDM improve the stiffness matrix accuracy (see Figure 4
and Figure 5 row-3).

The 17-segment model representations show that the initial tracker produces significant
under-estimation error (estimated borders are closer to the object center than the ground-truth
borders) at the apex region, the center of the polar plot (see Figure 5 row-1). Introducing
biomechanical constraints or increasing the model resolution without changing the model
shape does not significantly improve the tracking accuracy for the apex region (see Figure 5
row-2). The model improvement stage alleviates the problem by modifying the model shape
to have a curvier apical part, which is closer to the natural appearance of the LV (see Figure
3 (B) and Figure 5 row-3).

References

[1] S. Ahmad, B. M. Irons, and O. C. Zienkiewicz. Analysis of thick and thin shell struc-
tures by curved finite elements. International Journal for Numerical Methods in Engi-
neering, 2(3):419–451, 1970. ISSN 1097-0207. doi: 10.1002/nme.1620020310.



10DIKICI ET AL.: BIOMECHANICALLY CONSTRAINED DOO-SABIN SURFACE TRACKING

Figure 5: 17-segment model representations for the signed surface error: 5mm over-
estimation is purple, 5mm under-estimation is red, 0mm no-error is light blue. Rows 1, 2
and 3 show the error plots for the noBC, BCnoI, and BCwithI setups respectively. Columns
1, 2 and 3 show the error plots for the non-refined, refined and double-refined Doo-Sabin
model trackers respectively.

[2] M. Baruch and I. Y. Bar Itzhack. Optimal weighted orthogonalization of measured
modes. AIAA Journal, 16(4):346–351, 1978.

[3] C. A. Beattie and S. W. Smith. Optimal matrix approximants in structural identification.
Journal of Optimization Theory and Applications, 74:23–56, 1992. ISSN 0022-3239.
URL http://dx.doi.org/10.1007/BF00939891. 10.1007/BF00939891.

[4] A. Blake and M. Isard. Active contours: the application of techniques from graphics,
vision, control theory and statistics to visual tracking of shapes in motion. Springer-
Verlag New York, Inc., Secaucus, NJ, USA, 1998. ISBN 3540762175.

[5] M. D. Cerqueira, N. J. Weissman, V. Dilsizian, et al. Standardized myocardial
segmentation and nomenclature for tomographic imaging of the heart: a statement
for healthcare professionals from the Cardiac Imaging Committee of the Council
on Clinical Cardiology of the American Heart Association. . Circulation, 105(4):
539–542, January 2002. ISSN 1524-4539. doi: 10.1161/hc0402.102975. URL
http://dx.doi.org/10.1161/hc0402.102975.

[6] T. F. Cootes, C. J. Taylor, D. H. Cooper, and J. Graham. Training models of shape from
sets of examples. In In Proc. British Machine Vision Conference, pages 9–18, 1992.

http://dx.doi.org/10.1007/BF00939891
http://dx.doi.org/10.1161/hc0402.102975


DIKICI ET AL.: BIOMECHANICALLY CONSTRAINED DOO-SABIN SURFACE TRACKING11

[7] E. Dikici, S. R. Snare, and F. Orderud. Isoparametric finite element analysis for doo-
sabin subdivision models. In Proceedings of Graphics Interface 2012, GI ’12, Toronto,
Ont., Canada, Canada, 2012. Canadian Information Processing Society.

[8] D. Doo and M. Sabin. Behaviour of recursive division surfaces near extraordinary
points. Computer-Aided Design, 10(6):356 – 360, 1978. ISSN 0010-4485. doi: 10.
1016/0010-4485(78)90111-2.

[9] T. Hastie, R. Tibshirani, and J.H. Friedman. The elements of statistical learn-
ing: data mining, inference, and prediction. Springer series in statistics. Springer,
2009. ISBN 9780387848570. URL http://books.google.com/books?id=
tVIjmNS3Ob8C.

[10] G. Jacob, J. A. Noble, M. M. Parada, and A. Blake. Evaluating a robust contour tracker
on echocardiographic sequences. Medical Image Analysis, 3(1):63 – 75, 1999. ISSN
1361-8415. doi: DOI:10.1016/S1361-8415(99)80017-6.

[11] G. Jacob, J.A. Noble, C. Behrenbruch, A.D. Kelion, and A.P. Banning. A shape-space-
based approach to tracking myocardial borders and quantifying regional left-ventricular
function applied in echocardiography. Medical Imaging, IEEE Transactions on, 21(3):
226 –238, march 2002. ISSN 0278-0062. doi: 10.1109/42.996341.

[12] S. M. Kay. Fundamentals of statistical signal processing: estimation theory. Prentice-
Hall, Inc., Upper Saddle River, NJ, USA, 1993. ISBN 0-13-345711-7.

[13] H. Liu and P. Shi. State-space analysis of cardiac motion with biomechanical con-
straints. Image Processing, IEEE Transactions on, 16(4):901–917, March 2007. doi:
10.1109/TIP.2007.891773. URL http://dx.doi.org/10.1109/TIP.2007.
891773.

[14] F. Orderud and S. I. Rabben. Real-time 3d segmentation of the left ventricle using
deformable subdivision surfaces. In CVPR, 2008.

[15] S. K. Setarehdan and John J. Soraghan. Segmentation in echocardiographic images,
pages 64–130. Springer-Verlag New York, Inc., New York, NY, USA, 2002. ISBN
1-85233-389-8.

http://books.google.com/books?id=tVIjmNS3Ob8C
http://books.google.com/books?id=tVIjmNS3Ob8C
http://dx.doi.org/10.1109/TIP.2007.891773
http://dx.doi.org/10.1109/TIP.2007.891773

