
M.-G. PARK, K.-J. YOON: EFFICIENT POINT FEATURE TRACKING BASED ON SDT 1

Efficient Point Feature Tracking based on
Self-aware Distance Transform
Min-Gyu Park
mpark@gist.ac.kr

Kuk-Jin Yoon
kjyoon@gist.ac.kr

Computer Vision Lab.
Gwangju Institute of Science and
Technology (GIST), Korea
http://cvl.gist.ac.kr

Abstract

In this paper, we propose a Self-aware Distance Transform (SDT) for efficient template-
based point feature tracking. The proposed SDT encapsulates the relationship between
autocorrelation coefficients and the distance from the best match; therefore, it can be
used to automatically determine the size of a search region in each point feature. The
proposed SDT returns the expected distance between the predicted position and the best
match from a statistical viewpoint, which guarantees a certain level of successful track-
ing depending on the cross-correlation at the predicted position. If the SDT returns a
large expected distance due to the abrupt motion of a feature or inaccurate prediction, we
progressively expand the search region on a hexagonal lattice while also using the SDT
to reduce unnecessary computations. The performance of the proposed tracking method
based on the SDT was verified experimentally in terms of its accuracy, robustness, and
computational efficiency by comparing the proposed method to other tracking methods.

1 Introduction
The tracking of point features is an essential problem in computer vision because the acqui-
sition of feature correspondence from successive frames is a front-end step in many prob-
lems such as target tracking, simultaneous localization and mapping, and video stabiliza-
tion. Feature tracking algorithms can be divided roughly into three categories, i.e., tracking-
by-detection [8][2][11], tracking-by-template matching [16][7][5], and tracking-by-Lucas-
Kanade-Tomasi tracker(KLT) [17][19][1][6]. Each of these methods has its own advantages
and disadvantages.

Tracking-by-detection initially detects local features, e.g., corners [13], blobs [8], and
maximum extreme points[4], in every frame and matches them using local feature descrip-
tors such as SIFT [8][10][18] and SURF descriptors [2]. These descriptors are designed to
ensure robustness against image transformations, e.g., rotation and scale, as well as perspec-
tive distortions in images. However, the processes of feature descriptor computation and
feature matching are computationally demanding. Thus, previous studies have focused on
improving the computational efficiency of these steps by reducing the dimension of descrip-
tors [18], or by reducing the number of matching candidates using specific data structures
[14]. Several implementations can operate in real-time [18], but the selection of appro-
priate local feature detectors and descriptor-matching algorithms is an important issue that

c© 2012. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

Citation
Citation
{Lowe} 2004

Citation
Citation
{Bay, Tuytelaars, and Gool} 2006

Citation
Citation
{nguyen Ta, chao Chen, Gelfand, and Pulli} 2009

Citation
Citation
{Tanimoto} 1981

Citation
Citation
{Lewis} 1995

Citation
Citation
{Huang, Chen, Tsai, Shen, and Chen} 2006

Citation
Citation
{Tomasi and Kanade} 1991

Citation
Citation
{yves Bouguet} 2000

Citation
Citation
{Baker and Matthews} 2002

Citation
Citation
{Hwangbo, Kim, and Kanade} 2009

Citation
Citation
{Shi and Tomasi} 1993

Citation
Citation
{Lowe} 2004

Citation
Citation
{Donoser and Bischof} 2006

Citation
Citation
{Lowe} 2004

Citation
Citation
{Morel and Yu} 2009

Citation
Citation
{Wagner, Reitmayr, Mulloni, Drummond, and Schmalstieg} 2010

Citation
Citation
{Bay, Tuytelaars, and Gool} 2006

Citation
Citation
{Wagner, Reitmayr, Mulloni, Drummond, and Schmalstieg} 2010

Citation
Citation
{Silpa-Anan and Hartley} 2008

Citation
Citation
{Wagner, Reitmayr, Mulloni, Drummond, and Schmalstieg} 2010

http://dx.doi.org/10.5244/C.26.32

2 M.-G. PARK, K.-J. YOON: EFFICIENT POINT FEATURE TRACKING BASED ON SDT

affects tracking performance. The KLT tracker has been studied extensively [17][19][1][6]
and used for feature tracking. KLT is based on the small motion assumption1 and initially
KLT computes the optical flow of a feature and performs nonlinear optimization. Thus, the
estimation of the initial optical flow is an important problem. Pyramid-based [19], template
matching-based [12], and sensor-based [6] approaches can be used to compute the initial
motion accurately.

In addition to these approaches, template-matching techniques have also been used fre-
quently for feature tracking, and for other vision problems such as visual tracking and stereo
matching. This approach inherits the intrinsic characteristics of the template-matching prob-
lem, so previous studies have focused mainly on increasing the speed of matching [7][5],
improving the computational search efficiency [16][5], and developing robust similarity mea-
sures. For example, the use of an integral image [7] is a well-known technique for increasing
the matching speed during normalized cross-correlation (NCC) while a hierarchical approach
[16] is also used widely for improving the search efficiency. However, the size of a search re-
gion is still retained as a predefined parameter, although the size of a search region affects the
performance of an algorithm significantly. A larger search region increases the robustness of
an algorithm against abrupt motions but it requires greater efforts in searching and avoiding
false alarms. By contrast, a smaller search region increases both the efficiency and missing
probability of an algorithm. Thus, there is a trade-off between computational efficiency and
robustness, which depends mainly on the size of the search region.

To avoid this dilemma, we propose a Self-aware Distance Transform (SDT) with an
efficient feature-tracking method. The aim of the SDT is to estimate the optimal search
region size based on autocorrelation with a template in the initial frame. We use the spatial
relationship of the cross-correlation coefficients relative to the best match as the function of a
coefficient in the predicted position of a feature. Autocorrelation has been used to determine
the optimal grid interval [15] and to determine the transitive bound of template matching [9]
during video coding in previous studies, which were focused on increasing the speed of a
full search algorithm (FSA).

We analyze the reliability of our proposed SDT based on the autocorrelation coefficient
statistics to determine the reliable range of the SDT. If the returned SDT value is outside this
range, we progressively expand the search region on a hexagonal lattice while using the SDT
to eliminate unnecessary computations. The expansion step is terminated if a reliable match
is found. Therefore, the proposed tracking method increases the computational efficiency
and robustness of feature tracking thanks to the proposed SDT.

In this paper, we provide a detailed description of our proposed algorithm in section 2
including the SDT and the feature-tracking framework. In section 3, we present our ex-
perimental verification of the proposed method, which is compared with other algorithms
in terms of its time complexity, robustness, and accuracy. In section 4, we summarize and
conclude the paper.

2 The Proposed Method

2.1 The Objective and our Framework
Let I(x,y) and T (x,y) denote the intensity of an image and the intensity of a template in an
image coordinate, respectively. Our task is to find the position of the template in a source

1KLT assumes that the appearance of a template changes little in time and in space.

Citation
Citation
{Tomasi and Kanade} 1991

Citation
Citation
{yves Bouguet} 2000

Citation
Citation
{Baker and Matthews} 2002

Citation
Citation
{Hwangbo, Kim, and Kanade} 2009

Citation
Citation
{yves Bouguet} 2000

Citation
Citation
{Santner, Leistner, Saffari, Pock, and Bischof} 2010

Citation
Citation
{Hwangbo, Kim, and Kanade} 2009

Citation
Citation
{Lewis} 1995

Citation
Citation
{Huang, Chen, Tsai, Shen, and Chen} 2006

Citation
Citation
{Tanimoto} 1981

Citation
Citation
{Huang, Chen, Tsai, Shen, and Chen} 2006

Citation
Citation
{Lewis} 1995

Citation
Citation
{Tanimoto} 1981

Citation
Citation
{Sun, H.protect unhbox voidb@x penalty @M {}Park, and Kim} 2003

Citation
Citation
{Mahmood and Khan} 2010

M.-G. PARK, K.-J. YOON: EFFICIENT POINT FEATURE TRACKING BASED ON SDT 3

image by the maximizing similarity or minimizing dissimilarity measures of the template.
If we use the normalized cross-correlation (NCC) of a template as the similarity measure, it
can be represented as follows:

x∗ = argmaxx,y∈ΩR NCC(x,y),
NCC(x,y) = ∑i ∑ j

(T (i, j)−µT)(I(x+i,y+ j)−µI)
σT σI

,
(1)

where ΩR indicates an M-by-N search region and x∗ is the vector notation of the best match
position. In the rest of this paper, we use NCC as the similarity measure2.

Algorithm 1 Overall procedure of the proposed tracking algorithm based on SDT
1: Given: It(x,y) and xt . Initially, t is the time when the feature is extracted
2: Compute SDT . See Section 2.2
3: x̂t+1 = xt +(xt −xt−1) . Predict the feature position in the next frame
4: d̂t+1 = SDT (x̂t+1) . Compute the predicted distance to the feature
5: if d̂t+1 ≤ dmax then
6: Search for the best match xt+1 in d̂t+1 centered on x̂t+1
7: If the best match does not satisfy the termination criteria, then t = t + 1 and go to

line 3.
8: else
9: Expand the search region in a hexagonal lattice (initially l = 1)

10: for k = 1, ...,n do . n = 6l, see Section 2.3
11: d̂(l,k)

t+1 = SDT (x(l,k)t+1) . the indexing rule (superscript) is explained in Section 2.3

12: if d̂(l,k)
t+1 ≤ dmax then

13: Search for the best match xt+1 in d̂(l,k)
t+1 centered on x̂(l,k)t+1

14: If the best match does not satisfy the termination criteria, then t = t +1 and
go to line 3.

15: else
16: If we can increase l, l = l +1 and go to line 9.
17: . The maximum l should be determined for the termination, which we set as 5
18: end if
19: end for
20: end if

The overall procedure of our framework is shown in Alg. 1. After a new feature (and
the corresponding template) has been extracted, we build the SDT function via the autocor-
relation step. A detailed description of the construction of the SDT function is provided
in section 2.2. Next, we predict the position of a feature in a successive frame using the
constant velocity prediction model and we compute the expected distance to the best match
using the SDT. If the prediction is sufficiently reliable (i.e., the cross-correlation is high),
we search for the best match within the expected distance predicted by SDT using either a
three-step search (TSS) algorithm [5] or exhaustive search. However, if the expected dis-
tance is large and outside the reliable range (which is described later), we expand the search
region progressively until we find the correct solution. To expand the search region, we use
a honeycomb structure instead of a rectangular model, which increases the search efficiency.
The detailed procedure used for search region expansion is explained in section 2.3.

2It is possible to use any other robust similarity measure with the proposed method.

Citation
Citation
{Huang, Chen, Tsai, Shen, and Chen} 2006

4 M.-G. PARK, K.-J. YOON: EFFICIENT POINT FEATURE TRACKING BASED ON SDT

(a) (b)

Figure 1: Illustration of the SDT; (a) the result of autocorrelation and (b) the relationship
between the mean values of the autocorrelation coefficients and distance. The dotted vertical
line indicates the variance of the autocorrelation coefficients at the same distance.

2.2 Self-aware Distance Transform (SDT)
Determining the optimal size of a search region is an important but difficult problem because
it is impossible to predict how much of a feature will move into the next frame without
external measurements. The SDT tackles this problem by spatial autocorrelation with a
template to estimate the proximity of the best match in a successive frame by comparing
the correlation coefficient at a predicted position with the autocorrelation information. After
extracting a feature and its corresponding template, we immediately perform autocorrelation
of the image and the template using Eq. 1. We then generate a set of groups based on the
distance from the best match as follows:

F = {F1,F2, ...,FM−1,FM},
Fk = {C(p)|round(

√
p2

x + p2
y) = k} for 1≤ k ≤M,

(2)

where Fk is a set of correlation coefficients with the same distance from the best match,
p = [px py]

T is a relative position vector centered on the best match (0,0), C(p) is the auto-
correlation coefficient at p, and k ranges from 1 to the predefined constant M. This constant
is tuned automatically during the last step, so the selection of this value is not a significant
problem. Rather than using a continuous distance, we discretize the distance values for the
group of pixels and this distance is computed using a Chamfer distance transform. Next, we
compute the mean and variance of each group as follows:

µk =
1
|Fk| ∑C(p)∈Fk

C(p),
σ2

k = 1
|Fk| ∑C(p)∈Fk

(C(p)−µk)
2,

(3)

where µk and σk indicate the mean and standard deviation of the autocorrelation coefficients
at the distance k, while |Fk| represents the cardinality of a set of correlation coefficients.
These two statistics are the essence of SDT because they are used to the compute the opti-
mal size of a search region. Figure 1 shows the autocorrelation result and the relationship
between the mean and distance values. This relationship is used as a function of an NCC
coefficient, which allows the size of a search region to be determined automatically at each
prediction step. For example, Fig. 1 shows that the best match is probably within 3 pixels if

M.-G. PARK, K.-J. YOON: EFFICIENT POINT FEATURE TRACKING BASED ON SDT 5

the correlation value is 0.8. Finally, the SDT is defined as a function of a real valued vector
(the position of a feature), which yields a positive integer value as follows:

SDT : ℜ2→ N+ s.t.
d̂t+1 = argmin1≤k≤M |µk−Ct+1(x̂t+1)|,

(4)

where Ct+1(x̂t+1) indicates the NCC coefficient of a predicted position (we use a subscript
to indicate that this computes the NCC between the template and a successive image at time
t + 1) while the expected distance is computed by minimizing the difference between the
mean value and the NCC coefficients. Indeed, the SDT can be used for any other prediction
models; we use the constant velocity model for the prediction3. The expected distance con-
tains uncertainty that is proportional to corresponding variance σk where k equals d̂t+1. To
avoid unreliable estimation of expected distance, therefore, we restrict the range of the valid
expected distance, (0,dmax] is determined as follows:

dmax = argmaxk skσk,

where sk =

{
1 if σk < δD,
0 otherwise,

(5)

where sk is an indicator variable, which is 1 for variances lower than δD, i.e., the prede-
fined threshold value. This threshold is one of the main parameters that affect the tracking
performance and it was verified experimentally, as shown in section 3.

2.3 Addressing the Abrupt Motion of Features
There are two possible situations when using the SDT. First, the use of the cross-correlation
coefficient at the predicted position is adequate if the expected distance is less than dmax.
Thus, we only search the small search region determined by the SDT. Second, the precise
estimation of an accurate distance is not feasible if the expected distance is greater than
the dmax. Therefore, we define the abrupt motion of features as a sufficient condition for
matching ambiguity and we assume that one of the main reasons for local motion estimation
failure is the abrupt motion of features. Other causes of the performance degradation can
be considered during this step, such as a change in appearance or occlusion, but we do not
include any relevant schemes such as template update. To address the abrupt motion of
features, we progressively expand the search region until we find the correct solution. This
approach ensures an optimal search region size, although the motion of features is abrupt,
e.g., a feature moves 20 pixels during one time step. However, deciding when to stop remains
a critical issue.

To expand the search region, we use a hexagonal lattice centered on the predicted posi-
tion. Initially, there is a single hexagon, as shown in Fig. 2 (left). If the predicted distance
is greater than dmax, we increase the degree of the honeycomb by one, as shown in Fig. 2
(right). The distance between hexagons is determined by dmax because the hexagonal lattice
guarantees equidistance among neighboring hexagons. Thus, the use of a hexagonal lattice
increases the effectiveness of search compared with a rectangular lattice. Each hexagon in
the honeycomb is indexed as follows:

x(l,k) = {x1,x2, ...,xn}, n = 6l, (6)

3A better prediction model can increase tracking performance; however, this paper mainly focuses on the SDT.

6 M.-G. PARK, K.-J. YOON: EFFICIENT POINT FEATURE TRACKING BASED ON SDT

Figure 2: Illustration of a honeycomb structure and its corresponding indices.

where x denotes the position of a feature in the image coordinates, and the superscripts l and k
indicate the level and the number of a hexagon, where l starts from zero and k begins with one
for convenience. The level is indexed from the center while the number is indexed from the
top in a counter-clockwise manner. The number of hexagons at a specific level is proportional
to the level, i.e., six times the level. While increasing the size of the search region, we use the
SDT to determine the size of the search region and we reject inappropriate candidate regions
by comparing the SDT value to dmax. Thus, the actual number of computations is reduced
significantly by using the SDT, although the size of the search region increases exponentially.

We use two criteria to terminate search and tracking. In conventional approaches, a
threshold value (based on the similarity value) is used to decide whether we accept the cur-
rent estimate as the solution. A common choice for this threshold is 0.8 for NCC, although a
single constant value cannot guarantee a correct decision. Any cross-coefficient value above
this threshold may be a solution, especially if the feature prediction is not accurate but it still
yields high cross-correlation. To overcome this problem, we define a second termination
criterion by assuming small differences in the correlation coefficients as follows:

ĉt − ĉt+1 < δS, (7)

where ĉt indicates the NCC coefficient with the best match at time t while δS is the threshold
value of the difference in the correlation coefficients.

3 Experimental Evaluation

We conducted two experiments, where the first evaluated the SDT and the second evaluated
the performance of feature tracking in terms of the computational efficiency and robustness
of tracking. In this experiment, we set the parameters as follows: NCC termination thresh-
old δNCC = 0.8; δD ranged from 0.04 to 0.32 with an interval of 0.04; δS = 0.05; a template
size of 15-by-15; the fixed search regions were 7-by-7, 15-by-15, 21-by-21, 31-by-31, and
51-by-51; and the maximum layer of a honeycomb structure was 5. We captured four video
sequences using a hand-held camera while walking, running, and jumping in various envi-
ronments. We manually extracted the ground truth feature points and refined them using
local window searches in a 5-by-5 neighboring region.

M.-G. PARK, K.-J. YOON: EFFICIENT POINT FEATURE TRACKING BASED ON SDT 7

(a) Walking 1 (b) Walking 2 (c) Running (d) Jumping

Figure 3: First frames of test video sequences. We extracted 50 features from each sequence
in the first frames using a corner detector [13]. The average displacements of features were
(a) 3.4 px, (b) 4.3 px, (c) 7.2 px, and (d) 9.7 px. The maximum displacements were (a) 21.0
px, (b) 44.7 px, (c) 53.8 px, and (d) 67.74 px. The standard deviations of the displacements
were (a) 2.3 px, (b) 4.7 px, (c) 5.1 px, and (d) 7.5 px. Each sequence contained 400 frames,
except the running sequence (500 frames).

3.1 SDT Evaluation
We evaluated the accuracy of the SDT in terms of prediction errors and true positive ratios.
We computed the prediction error by calculating the expected distance and the ground truth
displacement of a feature as follows:

et = |d̂t+1−d∗t+1| s.t.
d̂t+1 = SDT (Ct+1(x∗t)) and d∗t+1 = ||x∗t+1−x∗t ||2,

(8)

where the accuracy of the SDT was based on the difference between the predicted distance
and the ground truth displacement. x∗t indicates the ground truth position of a feature at time
t and d̂t+1 is the expected distance at time t. Ct+1(x∗t) indicates the NCC coefficient of a
template in position x∗t at time t + 1. The average prediction errors of the SDT are shown
in Tab. 1 and these errors occur mainly due to the abrupt motion of a feature which draws
several peaks as well as large prediction errors as shown in Fig. 4, which also clearly suggests
that the proposed SDT approximates the actual displacement of features during egomotion.

We also searched for the best match within the expected distance using the TSS algorithm
[5]. If the correct solution was found, we counted this as a true positive, whereas they
were counted as false positives if this was not the case. Without constraining the valid
range of the SDT, true positive ratios were greater than 90% for the walking sequences and
greater than 70% for the jumping and running sequences, which contained numerous abrupt
feature motions. These ratios are computed using all the ground truth points over the entire
sequence (the ground truth track of a feature is less than the sequence length) and show
that the SDT itself ensures sufficiently narrow search regions in many cases. Approximately
10-30% percentage of the false positive cases significantly degrade tracking performance,
however, and these cases greatly depend on the selection of the control parameter δD, which
determines the valid range of the SDT. Therefore, we evaluate the effect of δD while varying
the value of δD, as shown in Fig. 5. As we restricted the value of δD, which increased the
frequency of progressive hexagonal expansion steps, the valid range of SDT decreased and
the false positive ratio was closes to 0%. There is a tradeoff between the computational
complexity and reliability; smaller δD decreased the false positive ratios and vice versa.
Therefore, this value should be determined to suit specific purposes; we can use a large value
if rapid computation is more important, whereas a smaller value can reduce the number of
false positives.

Citation
Citation
{Shi and Tomasi} 1993

Citation
Citation
{Huang, Chen, Tsai, Shen, and Chen} 2006

8 M.-G. PARK, K.-J. YOON: EFFICIENT POINT FEATURE TRACKING BASED ON SDT

(a) (b)

(c) (d)

Figure 4: Comparison of the expected distances (blue lines) and the ground truth distances
(red lines) for features in the walking 1 sequence.

Table 1: Evaluation of the SDT in terms of accuracy (average error) and correctness (true
positive ratio). True positive ratios are computed as the ratio of correctly estimated cases to
the number of entire ground truth points.

Walking 1 Walking 2 Running Jumping
Avg. Error 1.742 1.7846 3.044 4.504
T.P. Ratio 95% 92% 78% 72%

3.2 Feature Tracking Evaluation
To evaluate the features tracked using the SDT, we compared the lifetime of features and the
time complexity of template matching. The lifetime of a feature is the length of its track; if
the feature is correctly tracked then a longer track is preferable than shorter ones. Thus, we
compared the average lifetimes of features to evaluate the robustness of the method against
abrupt feature motions. Generally, the search of small region is computationally efficient,
but it improves the missing probability of tracking dut to faster motion of feature than the
size of search region. With our data sequences, the proposed method produced competitive
results in terms of the robustness of tracking against abrupt motions, as shown in Fig. 6
(b). However, the proposed method did not significantly increase the number of searching
operations as opposed to its robustness of tracking, as shown in Fig. 6 (a). Compared to con-
ventional template matching, which uses fixed sizes of search regions, the time complexity
of the proposed method was in between searching 3-by-3 region and 11-by-11 region while
showing better results than searching 31-by-31 region; mainly, this improvement is because
of the adaptively changed size of search regions. The time complexity tended to increase
with the proportion of abrupt feature motions.

M.-G. PARK, K.-J. YOON: EFFICIENT POINT FEATURE TRACKING BASED ON SDT 9

(a) Walking 1 and Walking 2 Sequences (b) Running and Jumping Sequences

Figure 5: Comparison of the false positive ratios and true negative ratios using different
values for δD.

In addition, we evaluated the performance of feature tracking with KLT-[1], SURF-[2],
and NCC-based template matching in terms of time complexity, actual running time, and
lifetime. We used the KLT code from the web site of S. Birchfield [3] and the OpenCV
2.44 versions for SURF and NCC matching. With our data sequences, the tracking of 100
features using the proposed method required about 3–10 ms, depending on the motion of
features. This tracking time can be boosted by using a simpler similarity measure or by
adopting fast template matching techniques. With KLT, the tracking time was about 40 ms,
while the OpenCV implementation was about 30% faster. The tracking time with SURF
is about 60–70 ms, which included the feature detection time. The tracking time increased
linearly with NCC matching, depending on the searching operations of template matching,
as shown in Fig. 6. Thus, the search of a 9-by-9 region required about 7 ms, while search
of a 21-by-21 region required about 37 ms, when using the template-matching function in
OpenCV. We can see the relative time complexity of KLT and SURF in Fig. 6 (a) based on
actual running time; two red bars indicate that this comparison can be different depending on
implementations and the total number of features to track. We also compared the lifetime of
features tracked by KLT to the proposed method; the KLT showed robust and accurate results
in a smoothely moving sequence such as the walking 1 sequence, however, the presence of
abrupt motions significanlty degraded the tracking performance of KLT, as shown in Fig. 6
(b).

4 Conclusions

In this paper, we presented a Self-Aware Distance Transform (SDT) for robust and fast fea-
ture tracking based on template matching. The SDT is computed during the autocorrelation
step and it determines the size of the search region at every step. With the SDT, we can use
a small search region when the feature motion is small, otherwise we can enlarge the search
region size as the motion of a feature increases. To address the abrupt motion of features, we
proposed the progressive expansion of the search region using a hexagonal lattice with two
termination criteria. We experimentally verified that the proposed method is computationally
efficient and that it maintains robustness during tracking.

4http://opencv.org

Citation
Citation
{Baker and Matthews} 2002

Citation
Citation
{Bay, Tuytelaars, and Gool} 2006

Citation
Citation
{Birchfiled}

10 M.-G. PARK, K.-J. YOON: EFFICIENT POINT FEATURE TRACKING BASED ON SDT

(a) Time complexity (b) Average lifetime of features

Figure 6: Comparison of the time complexity in terms of the number of search operations
(a) and the lifetime of features with various search region sizes (b).

Acknowledgement
This research was supported by Basic Science Research Program through the National Re-
search Foundation of Korea (NRF) funded by the Ministry of Education, Science and Tech-
nology (No. 2009-0065038).

References
[1] Simon Baker and Iain Matthews. Lucas-kanade 20 years on: A unifying framework:

Part 1. Technical Report CMU-RI-TR-02-16, Robotics Institute, Pittsburgh, PA, July
2002.

[2] Herbert Bay, Tinne Tuytelaars, and Luc Van Gool. Surf: Speeded up robust features.
In European Conference on Computer Vision (ECCV), pages 404–417, 2006.

[3] Stan Birchfiled. Klt: An implementation of the kanade-lucase-tomasi feature tracker,
http://www.ces.clemson.edu/ stb/klt/.

[4] M. Donoser and H. Bischof. Efficient maximally stable extremal region (mser) track-
ing. In Computer Vision and Pattern Recognition, 2006 IEEE Computer Society Con-
ference on, volume 1, pages 553 – 560, june 2006.

[5] Yu-Wen Huang, Ching-Yeh Chen, Chen-Han Tsai, Chun-Fu Shen, and Liang-Gee
Chen. Survey on block matching motion estimation algorithms and architectures with
new results. J. VLSI Signal Process. Syst., 42(3):297–320, March 2006.

[6] Myung Hwangbo, Jun-Sik Kim, and T. Kanade. Inertial-aided klt feature tracking for
a moving camera. In Intelligent Robots and Systems, 2009. IROS 2009. IEEE/RSJ
International Conference on, pages 1909 –1916, oct. 2009.

[7] J. P. Lewis. Fast normalized cross-correlation, 1995.

[8] David G. Lowe. Distinctive image features from scale-invariant keypoints. Interna-
tional Journal of Computer Vision, 60:91–110, November 2004. ISSN 0920-5691.

M.-G. PARK, K.-J. YOON: EFFICIENT POINT FEATURE TRACKING BASED ON SDT 11

[9] A. Mahmood and S. Khan. Exploiting transitivity of correlation for fast template
matching. Image Processing, IEEE Transactions on, 19(8):2190 –2200, Aug. 2010.

[10] J. M. Morel and G. Yu. Asift: A new framework for fully affine invariant image com-
parison, 2009.

[11] Duy nguyen Ta, Wei chao Chen, Natasha Gelfand, and Kari Pulli. Surftrac: Efficient
tracking and continuous object recognition using local feature descriptors. In IEEE
Conf. on Computer Vision and Pattern Recognition (CVPR), 2009.

[12] J. Santner, C. Leistner, A. Saffari, T. Pock, and H. Bischof. Prost: Parallel robust
online simple tracking. In Computer Vision and Pattern Recognition (CVPR), 2010
IEEE Conference on, pages 723 –730, june 2010.

[13] Jianbo Shi and Carlo Tomasi. Good features to track. In Computer Vision and Pattern
Recognition (CVPR), Ithaca, NY, USA, 1993. Cornell University.

[14] C. Silpa-Anan and R. Hartley. Optimised kd-trees for fast image descriptor matching.
In Computer Vision and Pattern Recognition, 2008. CVPR 2008. IEEE Conference on,
pages 1 –8, june 2008.

[15] S. Sun, D. Haynor H. Park, and Y. Kim. Fast template matching using correlation-
based adaptive predictive search. In International Journal of Imaging Systems and
Technology, volume 13, pages 169–178, 2003.

[16] Steven L Tanimoto. Template matching in pyramids. Computer Graphics and Image
Processing, 16(4):356 – 369, 1981.

[17] Carlo Tomasi and Takeo Kanade. Detection and tracking of point features. Technical
report, International Journal of Computer Vision, 1991.

[18] D. Wagner, G. Reitmayr, A. Mulloni, T. Drummond, and D. Schmalstieg. Real-time
detection and tracking for augmented reality on mobile phones. Visualization and Com-
puter Graphics, IEEE Transactions on, 16(3):355 –368, may-june 2010.

[19] Jean yves Bouguet. Pyramidal implementation of the lucas kanade feature tracker. Intel
Corporation, Microprocessor Research Labs, 2000.

