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The tracking of point features is an essential problem in computer vi-
sion because the acquisiton of feature correspondence from successive
frames is a front-end step in many problems. We divide feature tracking
algorithm rougly into three categories, i.e., tracking-by-detection [2, 6],
tracking-by-template matching [3, 5, 8], and tracking-by-Lucas-Kanade-
Tomasi (KLT) [1, 4] tracker. In this paper, we focus on improving the
second approach that inherits the intrinsic characteristics of the template
matching problem. Previous studies focused mainly on increasing the
speed of matching [3], improving the computational search efficiency [8],
and developting robust similarity measures. However, the size of search
region is still retained as a predefined parameter, although the size of a
search region affects the performance of an algorithm significantly.

To tackle this problem, we propose a Self-aware Distance Transform
(SDT) with an efficient feature-tracking method. The aim of the SDT is
to estimate the optimal search region size based on the autocorrelation
with a template in the initial frame. We use the spatial relationship of the
cross-correlation coefficients relative to the best match as the function of a
coefficient in the predicted position of a feature. After extracting a feature
[7] and its corresponding template, we immediately perform autocorrela-
tion of the image and the template; then generate a set of groups based on
the distance to the best match as follow:
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where Fk is a set of correlation coefficients with the same distance from
the best match, p = [px py]

T is a relative position vector centered on the
best match (0,0), C(p) is the autocorrelation coefficient at p, and k ranges
from 1 to the predefined constant M. This constant is tuned automatically
during the last step, so the selection of this value is not a significant prob-
lem. Rather than using a continuous distance, we discretize the distance
values for the group of pixels and this distance is computed using a Cham-
fer distance transform. Next, we compute the mean and variance of each
group as follows:
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2, (2)

where µk and σk indicate the mean and standard deviation of the autocor-
relation coefficients at the distance k, while |Fk| represents the cardinality
of a set of correlation coefficients. These two statistics are the essence of
SDT because they are used to the compute the optimal size of a search
region. Figure 1 shows the autocorrelation result and the relationship be-
tween the mean and distance values. This relationship is used as a func-
tion of an NCC coefficient, which allows the size of a search region to
be determined automatically at each prediction step. For example, Fig.
1 shows that the best match is probably within 3 pixels if the correlation
value is 0.8. Finally, the SDT is defined as a function of a real valued
vector (the position of a feature), which yields a positive integer value as
follows:

SDT : ℜ2→ N+ s.t.
d̂t+1 = argmin1≤k≤M |µk−Ct+1(x̂t+1)|,

(3)

where Ct+1(x̂t+1) indicates the NCC coefficient of a predicted position
(we use a subscript to indicate that this computes the NCC between the
template and a successive image at time t + 1) while the expected dis-
tance is computed by minimizing the difference between the mean value
and the NCC coefficients. Indeed, the SDT can be used for any other
prediction models; we use the constant velocity model for the prediction.
The expected distance contains uncertainty that is proportional to corre-
sponding variance σk where k equals d̂t+1. To avoid unreliable estimation
of expected distance, therefore, we restrict the range of the valid expected
distance, (0,dmax] is determined by thresholding larger variance values
than a predefined threshold. For the experiment, we computed both the
ground truth displacement and the predicted distance for the SDT evalu-
ation. As shown in Fig. 2 (a–b), the SDT well approximates the actual
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Figure 1: Illustration of the SDT; (a) the result of autocorrelation and (b)
the relationship between the mean values of the autocorrelation coeffi-
cients and distance. The dotted vertical line indicates the variance of the
autocorrelation coefficients at the same distance.
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Figure 2: Comparison of the expected distances (blue lines) and the
ground truth distances (red lines) for features in the walking 1 sequence
(a–b), and the evaluation of the proposed method in terms of time com-
plexity (c) and the lifetime of features (d) compared to other tracking
methods.

displacement of features; thus, the size of a search region can be adap-
tively chosen. As a consequence, the time complexity of the proposed
feature tracking method reduced significantly compared to other methods
while maintaining a certain level of robustness against abrupt motion of
features, as shown in Fig. 2 (c–d), respectively.
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