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Abstract
We propose an algorithm to detect planes in a single image of an outdoor urban

scene, capable of identifying multiple distinct planes, and estimating their orientation.
Using machine learning techniques, we learn the relationship between appearance and
structure from a large set of labelled examples. Plane detection is achieved by classifying
multiple overlapping image regions, in order to obtain an initial estimate of planarity for
a set of points, which are segmented into planar and non-planar regions using a sequence
of Markov random fields. This differs from previous methods in that it does not rely on
line detection, and is able to predict an actual orientation for planes. We show that the
method is able to reliably extract planes in a variety of scenes, and compares favourably
with existing methods.

1 Introduction
Planar surfaces are ubiquitous in man-made environments, and are important in automated
analysis since they constrain the scene structure and allow a simplified geometric represen-
tation [2]. Planes are especially useful when only a single image is available, for estimating
camera placement [13], wide-baseline matching [16] and creating simple 3D reconstructions
[11], for example. Single image plane detection has the advantage that there is no need to
accumulate parallax over many frames, so it can potentially be faster and more efficient, and
it can be used when further information cannot be obtained – such as with photographs.

We present an algorithm to detect planar regions in a single image. This divides an image
into planar and non-planar regions, and furnishes each plane with an orientation with respect
to the camera – see figure 1. The objective is to group a set of salient points into distinct
planar regions (i.e. we are not proposing a pixel-level segmentation), using texture and
colour information. Our algorithm does not rely on geometric reasoning or assumptions of
orthogonality, nor does it require the potentially difficult extraction of intermediate features,
such as vanishing lines or rectilinear structures.

We are motivated by humans’ apparent ability to interpret scenes easily, without explicit
reference to geometric information, based on our prior visual experience. To make use of
prior knowledge we use a machine learning approach, trained on data gathered in an urban
environment. In this respect, we are inspired by recent methods which are able to solve
similar single-image problems – for example surface layout detection by Hoiem et al. [11],
and Saxena et al.’s depth map estimation [18].
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2 HAINES AND CALWAY: DETECTING PLANES FROM A SINGLE IMAGE

Figure 1: An example result of our algorithm. From such an image as this, we can detect
planes and predict their 3D orientation, as shown on the right.

We make use of an algorithm which can classify planar image regions, and estimate their
3D orientation [8]. This is applied at multiple overlapping image locations, allowing esti-
mates of local planarity to be calculated at each of a set of salient points in the image. These
local plane estimates are used to segment the image into planar and non-planar segments, us-
ing a Markov random field (MRF) framework, resulting in a set of plane regions, each with
an orientation estimate. To our knowledge, such detection of planar regions with associated
orientation estimates, from a single image without explicit use of geometric information, has
not been demonstrated before.

The paper is structured as follows. In the next section, we describe related work; section
3 gives a brief overview of our whole method, followed by a detailed description of the
plane estimation method for individual regions in section 4, and the plane detection method
in section 5. The results in section 6 show that the method performs well in a variety of
environments, achieving a classification accuracy of 88% and a mean plane orientation error
of 18.3◦, and compares favourably with existing methods. Section 7 concludes the paper.

2 Background
One way to obtain planes from single images is to make use of geometric structures, such as
vanishing points and images of rectangles [9]. Košecká and Zhang [13], for example, use line
detection to find vanishing points, which are used to identify orthogonal planes. Similarly,
Micušık et al. [16] show how grouping lines into quadrilaterals can be used to find planes in
both indoor and outdoor scenes. These methods illustrate how such plane detection can be
useful, for estimating camera pose and performing wide baseline stereo; but while they are
ideal when strong lines are visible and the Manhattan world assumption is valid, they are not
generally applicable.

An alternative class of approach is to make use of shape from texture methods, in which
the statistical properties of surfaces are used to infer orientation [1]. Gårding [7], for ex-
ample, estimates the tilt and slant of planar surfaces using the distribution of line segments;
however, such methods rely on specific assumptions about the properties of the texture, and
are difficult to apply to more general scenes.

Other methods use machine learning, and are more similar to our approach. The most
prominent example is the surface layout recovery method of Hoiem et al. [11], which is
capable of recovering the basic geometric layout of a scene, and creating simple ‘pop-up’
reconstructions; this shows that it is possible to obtain good information about structure by
learning from monocular cues. Orientation is represented by classification into geometric
classes, which gives a coarse estimate of plane orientation (quantised to four directions,
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(a) (b) (c) (d)

Figure 2: Our method: from the input image (a), we sweep a classifier over the image to
obtain a point-wise local plane estimate (b). This is segmented into distinct regions (c), from
which the final plane detections are derived (d).

namely left, right, forward and supporting surfaces) – so while this gives impressive perfor-
mance in terms of geometric labelling, it is not explicitly intending to detect planes, and is
unable to give precise orientation.

3 Overview
We first provide an outline of the whole method; further details can be found in subsequent
sections. Our task is to group the salient points of an image into regions corresponding
to planar surfaces, complete with an orientation estimate, or into non-planar regions. To
achieve this, we employ the method described by Haines and Calway [8], which, given a
region of an image, classifies it as a plane or not, and predicts its orientation – we refer to
this as ‘plane estimation’. However, this in itself is not sufficient to detect planes, since we
do not know the boundaries between different regions. Our solution is to sweep a window
over the image, running the plane estimation about each salient point, in order to estimate
the local planarity (class and orientation) at each point, producing what we will refer to as
the local plane estimate (figure 2(b)).

While this appears to reflect the underlying structure, it is still insufficient: first, it does
not actually tell us about planar surfaces, since there is no notion of connectivity. Secondly,
the estimates at each point are only an average of all planes on which it might lie, as opposed
to a decision of the surface it belongs to. The next stage is therefore to separate the points,
first into planar and non-planar areas, and then to segment the planar regions into distinct
planes according to their orientation. This is done using the local plane estimate at each point
plus smoothness constraints, implemented within a MRF framework, to produce spatially
coherent regions, as illustrated in figure 2(c).

These segmented regions are then passed back to the plane estimation algorithm, to en-
sure they are truly planar, and to obtain an updated estimate of their orientation. These
regions constitute the final output of the plane detection algorithm, as shown in figure 2(d).

4 Plane estimation

In this section we describe the plane estimation step, in which individual regions are classi-
fied and given an orientation estimate. A full description of the method can be found in [8] –
here we give an overview and describe how it is adapted for use during plane detection. We
emphasise that this method was developed to only estimate the planarity and orientation of
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4 HAINES AND CALWAY: DETECTING PLANES FROM A SINGLE IMAGE

a given, pre-segmented region, and is not able to locate the planes in an image – that is the
focus of the current work, which we describe in section 5.

To summarise: this method proceeds by creating descriptors for points in an image re-
gion, which are quantised using a pre-computed codebook to form a bag of words; the word
vectors are projected into a latent topic space to reduce their dimensionality, and combined
with spatial distribution information from the 2D points by making use of spatiograms [4].
Such descriptions of training regions are used to train a classifier and regressor, which are
then used to predict the planarity and orientation of new test regions.

4.1 Training data
To acquire training data which is well suited to the plane detection task, we sweep a window
over marked-up ground truth images (as we do when creating the local plane estimate – see
section 5.1). We use images taken from a video sequence, collected in an urban environment,
hand-segmented into planar and non-planar regions (so that every pixel is covered), and
labelled according to their class (plane or non-plane). To specify the ground-truth orientation
for a region we mark by hand four points corresponding to the corners of a rectangle lying on
the plane in 3D; extending these mutually orthogonal worldlines to vanishing points allows
calculation of the normal to the plane. Where an extracted region lies over the boundaries
between ground-truth regions, we set its class and orientation to be the modal class and mean
orientation, respectively, of the underlying ground-truth regions.

4.2 Features
To describe the image regions, we first detect salient points – to reduce the amount of data
required, and focus only on regions with interesting appearance. For this we use the Differ-
ence of Gaussians detector [15], which gives the location and scale of the detected feature.
Descriptors are created for each point, using the detection scale to set the patch size.

Two complementary feature descriptors are used: we represent texture with histograms
of gradient orientation (following [8]), and colour with RGB histograms. Gradient orienta-
tion histograms are created by building histograms of estimated edge orientation, each with
12 angular bins, from the four quadrants surrounding the patch centre – these are concate-
nated to form a 48 dimensional gradient descriptor.

Colour descriptors are created by concatenating intensity histograms of the red, green
and blue channels of the image patch, each comprising 20 bins, forming a 60-D descriptor.
The importance of colour was demonstrated by Hoiem et al. [11], and we found it gave
better classification accuracy than the gradient histograms. As we hoped, combining both
gives performance superior to either in isolation.

However, colour is not likely to be beneficial for estimating orientation – indeed, we
found that using colour histograms alone gave poor orientation accuracy, and combining
both descriptors conferred no improvement. For this reason, we maintain separate topic
spaces for classification and regression, the former using gradient and colour descriptors and
the latter with gradient only, meaning that each region will have two spatiograms.

4.3 Region description
We use a visual bag of words [19] to combine the information from features in a region, built
by clustering representative feature vectors to form two codebooks (one for the gradient

Citation
Citation
{Birchfield and Rangarajan} 2005

Citation
Citation
{Lowe} 2004

Citation
Citation
{Haines and Calway} 2012

Citation
Citation
{Hoiem, Efros, and Hebert} 2007{}

Citation
Citation
{Sivic and Zisserman} 2003



HAINES AND CALWAY: DETECTING PLANES FROM A SINGLE IMAGE 5

histograms and one for the and colour histograms); new descriptors are quantised with these,
to form visual words. To combine the two vocabularies, and reduce their dimensionality, we
derive a latent topic space [10] from the concatenation of the two term-document matrices,
using Orthogonal Non-negative Matrix Factorisation (ONMF) [6] (chosen because it allows
simple projection into the topic space, and since non-negative coefficients are essential for
creating the spatiograms described next).

From the topics in each image region, we create a spatiogram [4] – this is a histogram
augmented with the mean and covariance of point locations contributing to each bin – where
each bin corresponds to a topic. This encodes the spatial distribution of the topics, which
as demonstrated in [8] provides improved performance over a standard bag of words model,
which discards all location information. Given two regions, we assess their similarity by
comparing their spatiograms, SA and SB, using the method proposed by Ó Conaire [17],
denoted by ρ(SA,SB). This forms the basis of classifying planar regions and estimating their
orientation based on training regions, as described in the following section.

4.4 Classification and regression
Regions are classified using a Relevance Vector Machine (RVM) [21] – since this is grounded
in Bayesian statistics, it gives a probability of classification, which we find useful. Crucially
– because it must be used hundreds of times per image – classification with the RVM is very
fast, as once it has been trained only a small proportion of the data are retained. We verified,
through cross-validation, that it is indeed much faster than the K-Nearest Neighbour (KNN)
classifier used in [8], and scales well to larger training sets (as shown in figure 3) – which is
important since accuracy improves with more training data.

The two-class plane/non-plane decision is handled by the standard RVM, but in order to
regress orientation, we need the multivariate regression RVM [20]. This is able to simul-
taneously predict all three dimensions of the normal vector using the same set of relevance
vectors. For both RVMs, we use a kernel function KS based on a polynomial function of
the spatiogram similarity measure ρ , since our experiments showed it to be superior to other
alternatives: thus KS(SA,SB) = ∑

Q
q=1 ρ(SA,SB)q, where the maximum power Q is set to 4.

Figure 3: Comparison of
the KNN and RVM classi-
fiers. Accuracy improves
with more training data for
both, but the RVM is much
faster.
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5 Detection

5.1 Sweeping
To detect the individual planar regions, we sweep a window over the image, sampling over-
lapping locations to identify potential planes. This is done by using each salient point in turn
as the centre of a window, defined by including all points within some radius (50 pixels in
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our experiments) – plane estimation is applied to each, discarding those whose classification
certainty (from the RVM) is below a threshold, to retain only the most confident estimates.
We empirically set the threshold to 0.8 in our experiments, which is generally sufficient to
avoid using ambiguous regions during calculation of the local planarity estimate.

The plane estimates from these overlapping windows are accumulated at the points: each
salient point i is given an estimate of its probability of belonging to the plane class, denoted
by ri, and of its orientation ni, by combining the values for each sweep window in which it
lies. We use the median for this (geometric median for vectors in R3) to give a degree of
robustness to outliers. The process, as illustrated in figure 4, results in an estimate of the
planarity and orientation at each point – the local plane estimate, figure 4(e) – which will be
used to segment the points into distinct regions.

(a) (b) (c) (d) (e)

Figure 4: The window sweeping process: from the input (a) we take a small window to
classify (b); this is swept across the image, covering it with overlapping windows (c) and
ignoring those with low probability (d). Points are given a class and normal derived from all
the windows in which they lie, resulting in a class and orientation estimate at each point (e).

5.2 Segmentation
We segment these points in two stages, first to separate planes from non-planes, then into
planes of different orientations. These are formulated as Markov random fields (MRF) [14],
on a graph formed from the salient points and the edges of a Delaunay triangulation.

To segment planes from non-planes, let p represent a configuration of the field, where
each node pi ∈ {0,1} represents the class of point i (1 and 0 being plane and non-plane
respectively). The goal of optimising the MRF is to find the optimal configuration p∗, defined
as p∗ = arg minpU(p), where U(p) denotes the posterior energy of the plane-class MRF:

U(p) = ∑
i∈S

V1(pi,ri)+∑
i∈S

∑
j∈Ni

V2(pi, p j) (1)

where ri is the observation at point i (the estimated probability of belonging to a plane,
being the median of all sweep estimates, as above), S is the set of all nodes, and Ni are
the neighbours of node i. The functions V1 and V2 are the single site and pair site clique
potentials respectively, defined as

V1(pi,ri) = (pi− ri)
2 (2) V2(pi, p j) = δpi=p j (3)

where δpi=p j takes the value 1 if pi and p j are equal, 0 otherwise. We initialise each pi to
the value in {0,1} which is closest to ri. The MRF is optimised using Iterative Conditional
Modes (ICM) [3], which generally converges within a few iterations. In short, the purpose
of optimising this MRF is to set each node to its most likely value (plane or not), given the
smoothness constraint implied by its neighbours.
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The plane-class MRF uses only two classes (plane and non-plane), making optimisation
straightforward; however, the MRF for plane orientation must deal with a continuous range
of normals. We make the assumption that the points belong to a finite number of planar
surfaces, corresponding to neighbourhoods of points with the same normal. The orientation
of these planes correspond to the modes in a density estimate of all the observed normals di
(the geometric median of the sweep estimates for each point), which we find using mean shift
[5] with a Gaussian kernel. Thus, plane segmentation is the process of deciding to which of
these discrete planes each point should belong, given its observation and its neighbours.

The configuration of this MRF is represented by n, where ni ∈ R3 is the 3D normal at
node i; each ni is initialised to the closest orientation mode, given its observation di. We wish
to obtain n∗ = arg minnE(n) , where the posterior energy E(n) is

E(n) = ∑
i∈S′

F1(ni,di)+ ∑
i∈S′

∑
j∈Ni

F2(ni,n j) (4)

and, using the function θ(·, ·) to calculate the angle between two vectors in R3, the clique
potentials are

F1(ni,di) = θ(ni,di) (5) F2(ni,n j) = θ(ni,n j) (6)

The final step, after extracting the planar segments, is to run them through the plane es-
timation algorithm once more, to get a planarity and orientation estimate based only on the
image area in question. However, the shapes of these segments are unlikely to be similar to
the windows used for sweeping, and so a second pair of RVMs is trained for this task, ob-
taining appropriate training data by running the full plane detection algorithm on the original
ground truth images. We find that using a separate classifier improves orientation accuracy
by several degrees in the final output (obviously, the segmentation is unaffected).

6 Results
To evaluate the method, we collected a second set of ground truth images, from a differ-
ent urban location, consisting of 63 manually segmented images – labelled as described in
section 4.1. To evaluate classification accuracy, we consider the percentage of points in the
image which are grouped into regions of the correct class. To assess orientation estimation,
we take the angle between the normal of each detected plane and the mean orientation in the
corresponding ground truth region (since detected regions will not necessarily lie entirely
inside a single planar region). These values are displayed for all examples shown.

After running the plane detection algorithm on these images, we obtain a mean point
classification accuracy of 88% (excluding the 6% of points which were not in any regions);
the mean orientation error for all regions was 18.3◦, which falls to 16.5◦ when considering
only those regions which do lie entirely inside true planar regions (around half of them), in-
dicating how well the algorithm can perform when segmentation is good. These results show
that the method can perform well, giving a correct classification for most points. We believe
the mean orientation accuracy of 18.3◦ to be very reasonable considering the difficulty of the
task, and that the method makes no explicit use of geometric information. It also compares
favourably with the value of 17.5◦ reported in [8], where all regions were known to belong
to a single planar surface.

We show some typical examples of these test images in figure 5. Figure 5(b) illustrates
successful disambiguation of non-coplanar surfaces, while 5(d) shows separation of planes
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(a)
Classifier acc.: 72%

Angle errors: 14◦, 21◦

(b)
Classifier acc.: 61%

Angle errors: 11◦, 27◦

(c)
Classifier acc.: 91%

Angle errors: 21◦, 49◦

(d)
Classifier acc.: 87%

Angle errors: 3◦

(e)
Classifier acc.: 99%

Angle errors: 10◦, 29◦

Figure 5: Example result of our algorithm. The four columns show, respectively, the input
image, the hand-labelled ground truth, the estimates at each point calculated from the sweep-
ing, and the final plane detection. Groups of planar points are enclosed in coloured regions,
displaying their orientation; individual coloured points have been deemed non-planar. Clas-
sification accuracy over all points, and the orientation error for each region, are displayed.

from non-planes. Example 5(e) is important, since it shows plane orientation can be recov-
ered in the absence of any obvious geometric structure. Again, we emphasise what is being
achieved: these planes are being detected, with an estimate of their extent and 3D orien-
tation, from just one image, without recourse to explicit geometric calculation. This is the
novel contribution of our work.

Examples where our method performs badly are shown in figure 6. A common error is
an inability to detect small regions, since fine details are difficult to observe using a region-
based classifier. We also observed a tendency to group disparate planes together (e.g. figure
6(b)), or to over-segment the image (6(c)), when sparse or inaccurate orientation estimates
are used for segmentation .

(a)
Classifier acc.: 85%

Angle errors: 11◦

(b)
Classifier acc.: 98%

(ignored 27%)

Angle errors: 41◦

(c)
Classifier acc.: 88%

Angle errors: 30◦,

12◦, 41◦, 47◦

Figure 6: Examples where our method fails. Columns are as in fig. 5.



HAINES AND CALWAY: DETECTING PLANES FROM A SINGLE IMAGE 9

6.1 Comparison to prior work
The closest work to ours is Hoiem et al.’s algorithm for recovering surface layout [11] (which
we refer to here as HSL). As we describe in section 2, this segments an image into geometric
classes, where left, right, forward, and supporting surfaces are considered to be planar, and
the others non-planar. Since we predict actual orientation, rather than discrete classes, we
quantise our orientation estimates to these classes in order to compare the two – thus orienta-
tion error is now expressed as a classification accuracy. As above, we evaluate both methods
by using the set of salient points (although these are not actually used as part of HSL).

We stress that HSL was not developed explicitly for plane detection – however, our in-
tention here is to determine, if we use it to group points into planar regions, how well it
performs. We tested this using code made available by the authors, which appeared to give
reasonable results when applied to our dataset. The results are as follows: for classifica-
tion accuracy, 71% of points are classified correctly, compared to 84% for our method; the
mean orientation class accuracy for HSL is 68%, while our algorithm achieved 73%. As
anticipated, given that our method is geared specifically toward plane detection, and uses a
training set gathered solely for this purpose, it gives better results than HSL.

(a)

(b)

(c)

(d)

Figure 7: Comparison to the surface layout method of Hoiem et al. (HSL). Columns are: in-
put image, ground truth, our method, our method drawn to show orientation classes, original
output of HSL, and HSL drawn to show orientation classes.

Figure 7 shows some example results. We show the output of our method as before, and
the standard output images of HSL (as described in [11]). To illustrate how we repurpose
HSL for plane detection, all non-planar regions are shown in blue (circle symbol), and left,
right, forward and supporting orientations are shown in yellow, red, brown and green respec-
tively, with arrow symbols denoting orientation class. In this manner we draw the output of
HSL, the quantised versions of our algorithm, and ground truth.

These images show that our algorithm performs similarly on some examples (such as
figure 7(a)), and is occasionally superior – like 7(c) where we successfully disambiguate
the two faces of a building; although here, as in many cases, we fail to detect the relatively
featureless road, whereas HSL is very good at detecting road surfaces since it uses different
types of feature. On others images, for example 7(d), HSL gives the better segmentation,
since it is more able to perceive fine detail.
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7 Conclusions
We have presented a new algorithm to detect planes, and estimate their 3D orientation, from a
single image. Unlike existing methods, we do not rely upon rectilinear structure or vanishing
lines, so that it is applicable to a wider range of scenes. We show that it is able to detect planes
with good accuracy compared to labelled ground truth, and compares well to [11], the most
similar existing work to ours.

Our method works by repeated sampling of windows from an image to recover individ-
ual planes; however, we have found that this makes the method unable to deal with small
planes. An avenue of future work, therefore, would be to incorporate edge or discontinuity
information, which has been shown to be beneficial in scene layout estimation [12]. It would
be interesting to use a similar technique for relative depth estimation, which is possible from
monocular cues [18, 22] – either to improve the fidelity of plane detection, or together with
plane detection for more sophisticated interpretation of images.
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