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This paper describes a method for generation of dense stereo ground-
truth using a consumer depth sensor such as the Microsoft Kinect. Such
ground-truth allows adaptation of stereo algorithms to a specific setting.
The method uses a novel residual weighting based on error propagation
from image plane measurements to 3D. We use this ground-truth in wide-
angle stereo learning by automatically tuning a novel extension of the
best-first-propagation (BFP) dense correspondence algorithm. We extend
BFP by adding a coarse-to-fine scheme, and a structure measure that lim-
its propagation along linear structures and flat areas. The tuned corre-
spondence algorithm is evaluated in terms of accuracy, robustness, and
ability to generalise. Both the tuning cost function, and the evaluation are
designed to balance the accuracy-robustness trade-off inherent in patch-
based methods such as BFP.

Wide-angle stereo provides an overview of a scene, even at very short
range. The large field of view (FoV) also ensures that the visual fields
from different points of view have a high degree of overlap. For these
reasons, wide-angle lenses are popular in navigation, mapping and visual
object search on robot platforms. However, the radial distortion caused by
these lenses complicates the application of traditional stereo algorithms.
A common approach to wide-angle stereo is to first attempt to remove
radial distortion and then apply a descriptor-based wide-baseline stereo
algorithm. An alternative approach is to use simpler matching metrics,
and instead leverage correspondence propagation. One such algorithm
is the best-first propagation (BFP) algorithm [2], and a recent addition
is the generalised PatchMatch algorithm (GPM) [1]. Though these algo-
rithms are more general than stereo algorithms, they have previously been
applied to the stereo problem.

Since we make use of both the inverse depth and pixel coordinates
in our calibration procedure, the effect of errors in these measurements
must be taken into account during calibration. We therefore propagate
error variances from these measurements into both 3D reconstructions
and resulting 2D projections. We then fuse multiple Kinect range scans
in a reference view coincident with the left stereo camera. This is done
by estimating a disparity distribution for each pixel in this image, and
using mean-shift to find the visible surface closest to the camera. We
have imaged three indoor scenes, and for each of them calculated 51
full-resolution wide-angle disparity maps. Examples of individual range
scans, an intermediate point cloud and the final disparity maps are shown
in figure 2 (top row).

We use these to tune our extension of the BFP algorithm, which we
call coarse-to-fine best-first propagation (CtF-BFP). Novelties are the use
of multiple scales, a structure threshold that limits propagation along lin-
ear structures, and a sub-pixel refinement step. These novelties add a mul-
titude of parameters, which make manual tuning difficult. We therefore
use an automatic tuning procedure, that minimises an objective function
that balances on accuracy, coverage and robustness.

‘When measuring performance of the stereo algorithm, we denote the
estimated disparity map to be evaluated by D(u,v) defined on the domain
V (pixels where disparities have been estimated). Similarly, the ground-
truth disparity image is D*(u,v), and the set of valid ground-truth pixels
is V*.

To find a useful set of parameters, we minimise an objective function
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based on the acceptance rate a(#,) (the relative portion of disparities with
an error below a threshold 7,) and rejection rate r(t,) (the relative portion
of estimated pixels that differ from ground-truth by more than a threshold
t). The parameter A € [0,1] allows us to control the relative weight of
the rejection and acceptance terms. Different values of A produce differ-
ent behaviour of J(#,4,t,) by influencing the trade-off between accuracy,
coverage and robustness. Results of the automatic tuning procedure are
shown in figure 3.

Figure 1: Left: In wide-angle images, angular resolution is near uniform.
Middle: If they are rectified to preserve straight lines, most of the image
is spent representing the periphery.

Right: Pan-tilt stereo rig with Kinect. (A) - SLP projector, (B) - RGB
camera, (C) - NIR camera, (D) - Left wide-angle camera, (E) - Right
wide-angle camera, (F) - Diffusor (raised).

Figure 2: Top: Example of ground-truth generation. Left: Individual
Kinect range scans. Right: several range scans projected into 3D.
Bottom: Examples of views for two scenes. Columns left to right:
Left wide-angle image, right wide-angle image, magnitude of dispari-
ties deemed reliably reconstructed. The final column shows magnitude
of disparity estimate obtained using tuned CtF-BFP.
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Figure 3: Left: Average acceptance curves over all data sets for automat-
ically tuned CtF-BFP with A = 0.5, BFP with original parameters, CtF-
BFP(u) (before tuning). Errors on manually selected correspondences in-
cluded as a best case. Right: Average acceptance curves over all data sets

for parameters tuned using A = 0,0.5, 1.
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