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Abstract

A novel framework for automatic object segmentation is proposed that exploits depth
information estimated from a single image as an additional cue. For example, suppose
that we have an image containing an object and a background with a similar color or tex-
ture to the object. The proposed framework enables us to automatically extract the object
from the image while eliminating the misleading background. Although our segmenta-
tion framework takes a form of a traditional formulation based on Markov random fields,
the proposed method provides a novel scheme to integrate depth and color information,
which derives objectness/backgroundness likelihood. We also employ depth estimation
via supervised learning so that the proposed method can work even if it has only a single
input image with no actual depth information. Experimental results with a dataset origi-
nally collected for the evaluation demonstrate the effectiveness of the proposed method
against the baseline method and several existing methods for salient region detection.

1 Introduction

This paper presents a novel framework for automatic object segmentation utilizing a depth
map estimated from an input image, which can distinguish an object from a background
with a similar color or texture (see Figure 1). The proposed method can work with only
a single image, in an automatic manner, and it can even run without any actual depth map
corresponding to the input image.

Object segmentation is a fundamental problem in computer vision. Although many seg-
mentation methods have been proposed, most of them still rely on the appearances of images,
i.e., colors or textures [5, 11, 18, 20, 24, 30]. Therefore, those methods have a difficulty in
distinguishing an object from the background with a similar appearance to the object. For
instance, suppose that an input image contains a target object and that there is a mimic that
looks similar to the object as shown in Figure 1(a). In this case, it is inevitable that the
appearance-based methods incorrectly detect the mimic such as in Figure 1(b).
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(a) . (b) © (d)

Figure 1: Concept figure of our approach. (a) Image containing an object (middle) and a
mimic (top right) with a similar appearance. (b) Segmentation result using only colors. (c)
Depth map corresponding to the image. (d) Segmentation result using colors and depths.
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Figure 2: Overview of proposed method.

On the other hand, humans can correctly distinguish the object from many types of
background since we subconsciously take account of the depth information of images (Fig-
ure 1(c)). The depth difference between the object and background plays a crucial role to
eliminate any incorrect detection of the background such as in Figure 1(d).

In this paper, we employ a depth map of an input image as an additional cue to the
segmentation. The main contribution of this work is to introduce a novel segmentation
framework that utilizes an estimated depth map to describe the features of the object and
background. While a depth map has great potential for use in segmentation, finding a way of
integrating two completely different physical quantities, namely the color and depth, has re-
mained unclear. With an observation of depth-map structures, we introduce an integration of
color and depth likelihood on objectness and backgroundness, which simply and effectively
extends a traditional segmentation framework based on the Markov random fields (MRF).
By refining the likelihood with depth information, our proposed method can suppress the
incorrect detection of mimics and other backgrounds.

Figure 2 shows an overview of the proposed method. The proposed method basically
takes a form of the traditional framework proposed in [5] (see Section 2.2); it builds likeli-
hood distributions of objectness and backgroundness by sampling pixel values of an input
image based on a given prior (an initial seed for the segmentation). Specifically, the proposed
method selects samples from both input image and depth map to individually estimate the
likelihood distribution, and integrates likelihood values from the two distributions as a form
of a weighted sum. Several discussions on the integration and related work are presented in
Section 2.3. Automatic segmentation can be achieved with the help of a saliency-driven prior
computed from a single image (see Section 2.4). On utilizing the depth, our method includes
depth estimation so that it works even if the input image has no actual depth information.
Specifically, we estimate depth maps via supervised learning (see Section 3).
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2 Proposed method

2.1 Problem definition

Let us first define the problem formulation and mathematical notations. A single image is
expressed by K = {Z,C}, where 7 = {Ix € R}xcq denotes an intensity image consisting
of a pixel value Iy at position x € Q;(Q C N? denotes the image domain) and C = {Cy €
R} xeq denotes a color image with a value Cy. The image has an object region O C Q to be
segmented. In its background region B = Q — O, there may be regions with a similar color
or texture to the object, which we refer to as mimics. Object segmentation is the problem of
assigning the label A = {Ax}xcq, which gives a label Ax = {0, 1} to each pixel, where the
labels 1 and O at x respectively correspond to the object x € O and background x € B.

Specifically, the problem in this paper is automatic object segmentation from a single
image. Automatic segmentation does not allow the manual avoidance of false segmentation
whereas manual segmentation approaches allow users to give an explicit background label
to misleading regions. Furthermore, single image segmentation cannot employ motion or
occlusion information, which has potential to specify backgrounds.

2.2 MRF-based object segmentation

The statistical relationship between an input image K and assigned labels .4 can be de-
scribed by an MRF, and the appropriate configuration of the labels, A, can be derived via
a maximum-a-posteriori (MAP) estimation, i.e., A = argmax 4 p(A | K). This estimation
is equivalent to an energy minimization problem where the energy function can be repre-
sented as the negative log likelihood of the joint posterior density distribution of the MRF,
E(A|K)= —logp(A|K). The energy function is defined as follows:

E(AIK) = ¥ {oo(K|an) +&Ax)+ ¥ (9s(K | AxAy) +Es(Aray) f ()

xXeQ YeNx

where Ny is a 4-neighborhood system of the position x. ¢p(K | -) and ¢s(K | -) are a likeli-
hood term, and &p () and &s(+) are a prior term, where the terms specified by the subscription
D and S describe data and smoothness terms, respectively. The data prior term Ep(Ay) eval-
uates how likely to an object the position is for all the pixels in an image. It is formulated as
Ep(Ax) = —log p(Ax), where the density p(Ay) is given as p(Ax=1)=1or p(Ax=1)=0
if the label 1 (object) or O (background) is given at the point x respectively, p(Ax = 1) = 0.5
if no label is provided at the point, and p(Ax = 0) is defined as p(Ax =0) =1 —p(Ax = 1).
In addition, the smoothness prior term &g (Ax,Ay) is given by the Kronecker delta.

Whereas the prior stands for the objectness or backgroundness in the image domain, the
likelihood evaluates them in the feature domain. The data likelihood term ¢p (K | Ax) is the
negative log likelihood that imposes pixel-wise penalties for assigning the label Ay to pixel
x. This likelihood basically employs the color information as ¢p(K | Ax) < —log p(Cx |
Ax). The likelihood distribution p(Cy | Ax) can be modeled as a Gaussian mixture model
(GMM). The RGB values Cx are first sampled based on the prior p(Ax = 1) and p(Ax = 0)
individually, and then GMMSs p(Cx | Ax = 1) and p(Cx | Ax = 0) are estimated from the
samples based on the expectation-maximization (EM) algorithm. The smoothness likelihood
term gives the difference of intensities for reducing the cost of two adjacent labels as follows:
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ds(K | Ay, Ay) (b — by’ L ifay£4 )
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Given the energy function shown above, it can be minimized by finding the minimum
cut on a graph equivalent to the MRF (see [6, 25] for details of the algorithm).

2.3 Introducing estimated depth

We now propose a novel formulation of segmentation, which introduces depth information.
The likelihood term evaluates features extracted from an input image, and thus it is expected
to involve features from a depth map.

Introduction of depth feature and its extraction As shown in Figure 3, depth-map struc-
tures are quite different from those of color images. In particular, the spatial discontinuities
of pixel values between objects and backgrounds in depth maps do not always agree with
those in color images (e.g., an object and the floor on which the object is placed). Therefore,
a consideration of depth continuities prevents us from distinguishing objects from back-
grounds, which implies that depth information is inappropriate to the smoothness term ¢s.
Instead, we introduce depth information into the data term ¢p. The problem is which
kind of depth features is promising. Here we note that we can utilize only the estimated
depth map that is not always accurate. Therefore, a convexity and a surface normal, which
are often utilized as depth features such as [8, 13, 22], are hard to introduce. Instead we take
particular note of “foregroundness” (nearness) of regions. Figure 3 demonstrates that the
averages in depth distributions appear at different values between the object and background,
while the corresponding intensity distributions look like each other. The above consideration
indicates that the absolute depth value is expected to be a simple but effective feature.

Integration of color and depth information The color and depth, or the features extracted
from them, are essentially difficult to fuse directly since they represent completely different
physical quantities. We therefore introduce a fusion of likelihood; specifically, a weighted
sum of color and depth likelihood values is introduced for the data likelihood term ¢p (K |
Ay). With the depth map denoted as Z = {Zx }xcqa, ¢p(K | Ax) is modified as follows:

Op(K | Ax = i) < —log p(Cx | Ax = i) — olog p(Zx | Ax = i) (i=0,1), 3)

where o; denotes a scale factor of the depth likelihood, which is individually set for both
Ax =1 and Ax = 0. Note that distributions of depths Z and colors C may take a different
variation because of the difference in the possible range of Z and C. We determine «; by
cross validation in the experiments.

Depth likelihood distributions p(Zx|Ax = 1) and p(Zx|Ax = 0) are modeled by the GMM
as well as color likelihood distributions p(Cx|Ax = 1) and p(Cx|Ax = 0). The parameters of
the GMM are estimated based on the EM algorithm, via the sampling of depth values based
on the prior p(Ax = 1) and p(Ax = 0).

Related work on multi-cue integration When the objective of integration is object detec-
tion or classification, several studies evaluate how much each cue contributes to the tasks for
the integration [9, 13]. For image segmentation, cues are often integrated in specific terms in
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Figure 3: Distributions (blue) and spatial variations (red) of the data in color images and
depth maps. The green rectangles describe the region on which objects are displayed.

the MRF [11] or by combining MRFs [17, 18]. Here, our proposed method takes a similar
approach to [11, 17, 18] since it integrates color and depth information based on the MRF. In
[17, 18], they basically regard multiple features (color and texture in [18], and color and mo-
tion in [17]) as equals, and introduce the other feature (texture or motion) to the smoothness
term. Our approach employs depth information together with color, and thus it is difficult
to apply the above approaches because of the characteristics of depth information as shown
in Section 2.3. On the other hand, [11] introduces color and texture information for the data
term, and color information for the smoothness term. The proposed method can be regarded
as the same group as the method above.

Several studies have reported the joint utilization of appearance and depth information.
Depth estimation and segmentation are solved simultaneously using stereo images [4, 32].
Given depth maps, color and depth information is integrated for indoor scene segmenta-
tion [29] or classification [3]. From the point of utilizing the given depth maps, the proposed
method is especially close to [3, 29]. However, the proposed method is different from those
methods since it requires no actual depth information thanks to the depth estimation.

2.4 Automatic computation of prior

To avoid the manual labeling of the prior p(Ay), several automatic approaches have been
proposed [2, 10, 12, 19, 31]. As described in Section 2.2, ép(Ax) plays a role to give
objectness and backgroundness to positions in an image domain as well as to yield feature
samples for the estimation of likelihood distributions ¢p (K | A;). Considering the former
role, the regions with high objectness prior are expected to specify object positions roughly.
However, the latter role requests the objectness prior to be high only within object regions.

To meet these requirements, we employ the eye focusing density map (EFDM) [23]
that indicates where humans tend to fixate in an image. While the EFDM is based on a
typical saliency map [15], it introduces the specifications of several high salient positions
via stochastic computation. The obtained EFDM is applied to the prior density p(Ax = 1).
Exceptionally, the prior density at the edge of the image is assumed to be p(Ax =1) =0
since some of the edges are expected to be background. The effectiveness of EFDM for
segmentation has been confirmed in [2, 10].

In terms of utilizing saliency maps for segmentation, salient-region detection (SRD) tech-
niques including [1, 7, 16] have a similar concept. They are essentially quite different ap-
proaches; their computation of saliency maps also includes detection of object-region bound-
aries, which results in the segmentation based on thresholding techniques. The comparison
between the proposed method and SRD-based methods is provided in Section 4.
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Figure 4: Overview of depth estimation.

3 Depth estimation

Depth estimation has several typical approaches including binocular stereo vision, structure
from motion (SFM), and shape from X. This paper focuses on single image segmentation,
and thus requires a depth estimation from a single image such as [14, 21, 26, 27, 28]. We
here introduce a supervised approach which simplifies the method proposed in [27] to re-
duce computational efforts in the learning phase while keeping the concepts of the method.
The original work [27] introduces a formulation based on the MRF which involves spatial
image-feature relationships. The MAP estimation of the MRF is eventually equivalent to the
regression which maintains the robustness of model and the smoothness of output. Instead,
we introduce a pixel-wise regression of depth values with ¢;-norm regularization of model
parameters. Moreover, we apply a median filter to the depth map to obtain smoothness.

We employ several features suggested in [27, 28] (see Figure 4). Specifically, the primi-
tive features are first computed for each pixel by applying Law’s masks and texture gradient
masks to the intensity image Z. We then adopt 3 types of patches considering spatial relation-
ships: 1x 1 neighbors, 3 x3 neighbors, and column quarter partitions. Features for estimating
depth maps are finally derived by aggregating the primitive features in those patches.

4 Experiments

4.1 Experimental setup

To verify the proposed method, we prepared a dataset consisting of color images and depth
maps as a first step. The dataset was collected carefully under the controlled environment
including 4 instances of colored objects, under the 4 kinds of backgrounds, which included
several mimics with a similar color or texture to the objects. Here, for simplicity, we assume
that the image includes only one object . The mimics included single-colored rectangular
papers or posters in which the objects were printed.

Pairs of aligned color images and depth maps were captured with a structured light sen-
sor. 16 different scenes (4 objects x 4 backgrounds) constitute the obtained dataset, and

I'Since the proposed method takes the form of traditional MRF-based frameworks, it can be easily applied to
multiple object segmentation via a-expansion or other approaches.
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Figure 5: Example of segmentation results using M,: color-based method and Mq4: proposed
method, and saliency computation using FT: [1], RC: [7], and CB: [16].

each of the scenes has 70 pairs of color images and depth maps, which include variations of
object poses, positions, and lighting environments. Consequently, 1120 pairs were captured.
Depth maps obtained with a structured light sensor are known to have deficiencies, which
are called infra-red (IR) occlusions. This phenomenon often occurs when the IR laser light
is occluded by some obstacles. Such IR occlusions in depth maps were interpolated with a
pre-processing technique by using the nearest-neighbor depth values.

848 randomly chosen pairs were employed as a training dataset for depth estimation, and
the remaining 272 pairs were used as a test dataset. We manually annotated the ground-
truth region of objects for the test images, and applied a pixel-wise evaluation to all the
segmentation results. The recall, precision, and F-measure score were adopted as evaluation
measures. The scale constants ¢; presented in Section 2.3 were estimated via 4-fold cross
validation based on the F-measure.

Color-based segmentation was employed as the baseline approach (referred to as M).
Note that both M, and the proposed method (M) utilize the same prior to keep the same ex-
perimental conditions. Additionally, several SRD-based methods, FT [1], RC [7], CB [16],
were examined here. These approaches originally have unique thresholding techniques to
obtain segmentation results from their saliency maps. However, in the experiments we deter-
mined a threshold based on the cross validation to achieve fairness between those methods.

4.2 Results and discussions

Results Table 1 shows the scores averaged over each measure obtained with each method.
In addition, Figure 5 shows some examples of segmentation results. With regard to Figure 5,
(SC1) and (SC2) have a background with single-colored rectangular papers. In (SC1), the
object does not occlude the papers whereas (SC2) includes objects that occlude some of the
papers. On the other hand, (SC3) and (SC4) have a background consisting of a poster on
which the object is displayed. In particular, (SC4) includes a larger poster than (SC3). These
results demonstrate that Mg can work well with regard to the F-measure score thanks to the
improvement of precision, while it shows a comparable recall to the other methods.
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Table 1: Scores averaged over each measure Table 2: Scores averaged over each measure

(controlled images) (complex images)
Recall Precision F-measure Recall Precision F-measure
M.  0.92 0.47 0.61 M. 091 0.44 0.57
My 088 0.76 0.80 My 085 0.70 0.74
FT 0.58 0.42 0.46 FT 0.48 0.59 0.51
RC 0.58 0.69 0.62 RC 0.64 0.71 0.65
CB 0.67 0.60 0.60 CB 0.80 0.79 0.74

Improvement of precision M4 can suppress the incorrect detection of backgrounds de-
spite of the use of the same prior as the baseline M.. Generally, background regions are
incorrectly detected when the objectness prior captures not only object regions but also parts
of the backgrounds. However, since depth values in object and background regions were
different from each other and their variations were quite small in both regions as shown in
Figure 3, the incorrect detection of background was suppressed even if the prior was unsta-
ble. Only the case that M4 fails segmentation is when the background occupies most of the
regions with high objectness prior such as Figure 6.

Limitation on recall M4 sometimes brings down over-segmentation at object boundaries
as shown in Figure 5, which results in the decrease of recall scores. As described in Figure 7,
the depth estimation implemented in M4 tends to regard objects as convex regions. Hence,
the depth values of the object boundaries tend to be similar to those of backgrounds, and
it eventually brings down the over-segmentation. Together with the improvement of depth
estimation, it will be effective to adaptively emphasize colors than depths for integration at
the regions with inaccurate depths.

Comparison with salient-region detection As mentioned in Section 2.4, the SRD-based
methods, FT, RC and CB, take different approaches from MRF-based approaches including
the proposed method. One of characteristics of SRD-based methods is that they do not
specify what the object is, and thus sometimes detect mimics incorrectly or at the worst fail to
capture objects (see the 1st and 3rd row of the column FT) as shown in Figure 5. On the other
hand, SRD-based methods can obtain accurate region boundaries at the stage of their saliency
computation, while the proposed method often tends to bring down the over-segmentation.
Obviously the SRD-based methods can work well for images that contain large-size objects
and require no specification of the objects as shown in [1, 7, 16]. Eventually, it is effective
to choose appropriate methods depending on the types of scenes.

Performance for images with complex backgrounds Finally, Figure 8 and Table 2 show
some results of segmentation for 86 pairs of images with complex backgrounds consisting
of several office scenes. Since the dataset contains small number of images against a large
variation of backgrounds, the parameters for depth estimation, ¢; and the threshold for binal-
ization in the SRD-based methods were manually adapted with regard to each of the scenes.
On these complex images, the baseline method M, often detect backgrounds incorrectly
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when the prior behaves unstable. On the other hand, the proposed method M.y generally
eliminates the incorrect background detection thanks to the introduction of depth informa-
tion though it often brings down over-segmentation. Regarding to the SRD-based methods,
some results show that they completely fail to specify objects, and others show the incorrect
detection of backgrounds around the objects. Still, the method CB can accurately capture
the objects, and it obtains comparable F-measure scores with the proposed method.

5 Conclusions

We proposed a novel framework for automatic object segmentation from a single image.
Since the method employs depth information combined with color information, the false
detection of backgrounds containing a similar appearance to the objects is greatly decreased.

The future work will include not only an improvement of depth estimation and adaptive
determination of the importance weights of colors and depths in integration, but the build of
a dataset consisting of color images and depth maps with complex backgrounds to introduce
a large-scale depth estimation, which will realize an open test of the proposed method.
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