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Abstract

We address the problem of scene depth recovery within cross-spectral stereo imagery
(each image sensed over a differing spectral range). We compare several robust matching
techniques which are able to capture local similarities between the structure of cross-
spectral images and a range of stereo optimisation techniques for the computation of
valid depth estimates in this case. Specifically we deal with the recovery of dense depth
information from thermal (far infrared spectrum) and optical (visible spectrum) image
pairs where large differences in the characteristics of image pairs make this task signi-
ficantly more challenging than the common stereo case. We show that the use of dense
gradient features, based on Histograms of Oriented Gradient (HOG) descriptors, for pixel
matching in combination with a strong match optimisation approach can produce largely
valid, yet coarse, dense depth estimates suitable for object localisation or environment
navigation. The proposed solution is compared and shown to work favourably against
prior approaches based on using Mutual Information (MI) or Local Self-Similarity (LSS)
descriptors.

1 Introduction
The performance of standard optical camera systems can be severely affected by environ-
mental conditions like low lighting, shadows, smoke/dust or semi/fully camouflaged objects
[9]. A method to overcome such problems is to use combined sensing systems operating in
differing parts of the electromagnetic spectrum. For example, infrared images, often referred
to as thermal images, are independent of visible light illumination and shadows, relatively
robust to dust/smoke and can often distinguish objects which look similar to the background
within the visible spectrum [13]. However, thermal images are conversely affected by ambi-
ent temperature and can offer difficulty in identifying objects with a similar temperature to
the background (ambient temperature). As a result, an attractive solution is the combination
of both optical and thermal images in many sensing and surveillance scenarios as the com-
plementary nature of both modalities can be exploited and the individual drawbacks largely
compensated (e.g. [27, 3, 9, 13, 7]).

Practically, a possibility is to simply alternate between the use of optical and thermal
cameras - for example to switch from optical to thermal imagery for night- or low-light-
vision. More sophisticated approaches use both modalities simultaneously when the circum-
stances permit and employ sensor fusion methods to combine the information acquired from
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the different images [9]. Despite the inherent stereo setup of this common two sensor de-
ployment, in practical scenarios it is rarely exploited. A separate optical stereo setup is often
favoured for the desired recovery of depth information [3]. However, the direct recovery of
depth information from such a cross-spectral stereo setup1 could facilitate stereo within the
existing sensor foot-print (i.e. power, weight, cost, size, complexity) for applications such as
obstacle avoidance [18], object detection [13] and tracking [21].

Prior work on the direct recovery of depth information from cross-spectral stereo images
is limited [21, 22, 31]. Krotosky and Trivedi [21, 22] investigate cross-spectral stereo for
pedestrian detection and tracking, using a window-based Mutual Information (MI) approach
inspired by the original work of Egnal [10]. However, depth computation is only performed
for isolated objects (i.e. pedestrians) via prior foreground extraction and subsequent local-
ised stereo matching [21, 22]. Krotosky and Trivedi [22] additionally demonstrate the failure
of dense depth computation using MI in the global energy minimisation framework of [14]
caused by the lack of a global intensity transform between the images. The MI energy term
cannot be effectively minimised globally as both good and bad matches produce similarly
large values. More recently, Torabi and Bilodeau [31] describe a very similar window-based
approach but replace MI by Local Self-Similarity (LSS) as a correspondence measure. LSS
was originally proposed in [26] for object detection, retrieval and action recognition in visu-
ally differing scenes and better performance than MI for this task is reported but again only
on isolated scene objects [31]. Similar sparse scene feature matching techniques are pro-
posed for the related problem of cross-spectral image registration [4] but these do not con-
sider depth recovery.

Furthermore, the review of [16] identified a number of pre-processing filters and match-
ing costs robust to the less challenging stereo problem of inter-image radiometric (illumin-
ation) differences. A number of authors [10, 12, 11, 19] propose using variants on an MI
based approach for cross-spectral stereo matching based on results achieved on purely sim-
ulated cross-spectral data (i.e. where one image has undergone a radiometric transform to
simulate an infrared/thermal image or similar). Here we illustrate both the limited applic-
ability of these simulated data results [10, 12, 11, 19, 16], and the limited performance of
approaches from prior cross-spectral work [21, 22, 31], in comparison to the use of dense
gradient features with an appropriate optimisation approach.

2 Proposed Approach
Following the taxonomy of [25], dense stereo matching approaches can be split into four
steps:- 1) pixel matching cost computation, 2) cost aggregation, 3) disparity (depth) optim-
isation and 4) disparity refinement and post-processing. Here we will concentrate on step 1-3
whilst assuming established post-processing approaches (step 4, [25]). The reader is directed
to [25] for a general overview of dense computational stereo.

2.1 Cross-Spectral Rectification
In order to facilitate successful stereo matching the problem of cross-spectral stereo calib-
ration has to be addressed. In prior work this sub-problem has either been avoided via the
use of simulated imagery (with prior calibration in the visual spectrum) [12, 11, 19] or via
scene feature driven registration [4]. Here we utilise the established calibration approach of
[33] with a dual-material calibration target which is visible in both spectra (i.e. metal plate

1The terms multi-spectral, cross-spectral or multi-modal are often used interchangeably to generally refer to
systems combining images in different spectral bands. Here we will consistently use the term cross-spectral for the
combination of standard optical (visible) and thermal (infrared) images.
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Figure 1: Cross-spectral calibration target (A) and rectified result (B)

with overlain reflective fabric “chessboard” pattern). This is simply heated using hot air or a
high-power halogen lamp such that the varying latent heat properties of each material max-
imise the separation within the far infrared (thermal) spectral range required (see Figure 1A).
Based on the approach of [33] the imagery is undistorted and rectified using the intrinsic and
extrinsic camera parameters respectively (see Figure 1B). In general, robust cross-spectral
calibration is identified as an area for future work while here we show that the use of [33]
with a suitably engineered calibration target is viable.

2.2 Cross-Spectral Pixel Matching
While there is clearly no direct relation between pixel intensity values in this case, as are
exploited by standard stereo algorithms, obvious similarities exist on a semantic level con-
sidering objects and object boundaries. Many corresponding object boundaries and edge
fragments appear in both spectra, enabling a human observer to easily match corresponding
objects in the images (e.g. Figure 1). From this observation we motivate our approach of
using statistical local shape features based on image gradient orientations as a dense corres-
pondence measure. This concept is commonplace in the feature descriptor approaches of
SURF [2], SIFT [23] and alike. However, in cross-spectral images the orientation of image
gradients do not correspond unambiguously because bright regions in the visible image can
be dark in the thermal image and vice-versa (this is both sensor and ambient temperature
dependent, Figure 1). As a result, we base our similarity on the unsigned gradient orienta-
tion, i.e. always mapping to the interval (0,π), as proposed for object detection in [8]. This
Histogram of Oriented Gradient (HOG) approach creates a descriptor optimised for “dense
robust coding of spatial form” [8] robust to radiometric and illumination changes for object
detection that can both be efficiently computed and readily compared using the L1 or L2
distance between descriptors.

Our Histograms of Oriented Gradient (HOG) features are a variant of the approach pro-
posed by [8]. The HOG descriptor is based on histograms of oriented gradient responses
in a local region around the pixel of interest. Here a rectangular block, pixel dimension
b× b, centred on the pixel of interest is divided into n× n (sub-)cells and for each cell a
histogram of unsigned gradient orientation is computed (quantised into H histogram bins for
each cell). The histograms for all cells are then concatenated to represent the HOG descriptor
for a given block (i.e. associated pixel location). For image gradient computation centred
gradient filters [−1,0,1] and [−1,0,1]T are used as per [8]. To maximise invariance we norm-
alise the whole descriptor to L2 unit norm with the resulting HOG descriptor as a n×n×H
descriptor per pixel. A comparison, hence matching cost, between any two HOG descriptors
is thus computed using the L1 distance. Dense HOG descriptors for every image pixel are
computed efficiently by using integral histograms [24] allowing fast descriptor computation
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but preventing the use of spatial weighting (e.g. Gaussian) of gradient responses within any
given descriptor in this case.

2.3 Disparity Optimisation
In addition to robustly computing the localised matching cost, the quality of the overall dis-
parity image depends heavily on the disparity optimisation method used [25, 16]. Compared
to standard stereo images, cross-spectral images can be expected to produce more ambigu-
ous or false matches as well as weaker correct matches. Weaker correct matches can be
caused by the difficulty of matching cost metrics to cope with naturally different appearance
in the different spectra (e.g. see Figure 1B). It is thus important to compare how different
optimisation techniques can compensate for these difficulties within a cross-spectral context.
Overall a set of five such optimisation techniques are considered [25, 29, 15] and applied to
the computed matching cost volume.

The simplest (“textbook”) method which we investigate first is the Winner-Takes-All
(WTA) method where the disparity producing the minimum matching cost is chosen at each
pixel location [25]. The next, somewhat more advanced method, is a Dynamic Program-
ming (DP) approach which enforces additional constraints along the image rows and is
computationally efficient [25]. In addition, we test Scan-line Optimisation (SO), a com-
mon variation of dynamic programming which in contrast to a regular DP approach does not
explicitly account for occlusions or enforce an ordering constraint [25]. Furthermore, we
include Hirschmueller’s seminal Semi-Global Matching (SGM) [15] which is both compu-
tationally efficient and provides improved global disparity smoothness constraints compared
to DP. Finally, we evaluate the performance of global optimisation using Graph Cuts (GC)
(expansion-move) to ascertain if improved results are achievable at additional computational
cost [6, 5, 20, 29].

To enforce additional local smoothness constraints and reduce matching cost outliers we
combine SO and DP optimisation with adaptive cost aggregation similar to [32] and apply
a simple equally weighted (results in Section 3.1) or Gaussian weighted (results in Section
3.2) box filter to the matching costs prior to WTA, SGM and GC optimisation.

3 Results
For comparative evaluation within the context of prior work in this area [10, 19, 12, 11, 16,
21, 22, 31] we reproduce results from [10, 11, 16] on simulated cross-spectral imagery in
addition to evaluating both a method based on recent LSS feature driven work [26, 31] and
our own dense gradient feature proposal on the same (Figures 2 - 4). From this we down-
select a subset of approaches [10, 16, 31] for comparison to the proposed approach on true
cross-spectral imagery (Figures 5 - 10).

3.1 Simulated Cross-Spectral Stereo
In Figure 2 (left) we show the “parking meter” (upper) and “shrub” (lower) stereo pairs
from the CMU VASC image database [1]. Furthermore we illustrate the optical stereo result
achieved using Zero Mean Normalised Cross Correlation (ZNCC) [16] and in addition show
a transformed version of the left stereo image of each pair (Figure 2, right) following the
simulated transforms of [12, 11].

Using these simulated (right = visible, left = transformed “infrared”) stereo pairs we
evaluate the proposed radiometric invariant approaches of ZNCC, Zero mean Sum of Abso-
lute Differences (ZSAD), Rank based matching and Census based matching from [16] and
in addition, further following [16], ZNCC variants with standard mean, Laplacian of Gaus-
sian (LoG), background subtraction by Bilateral filtering and Gradient Magnitude response
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Figure 2: Example imagery for evaluation on simulated cross-spectral stereo

image pre-processing (Figure 3, [28]). All are computed with a simple Winner-Takes-All
(WTA) disparity selection while other parameters are set with reference to the original works
(ZNCC/ZSAD/Rank/MI w = 11; Census w = 7; MI #bins = 16, λ = 0.4; LSS patch size =
5, region size = 35, log-polar grid = (4 radial, 12 angular) [10, 11, 16, 31]) and HOG
parameters (H = 9, n = 3, b = 18) specific to this task [8].

In Figure 3 we can see that, with the exception of ZNCC (gradient magnitude), the res-
ulting depth images from these techniques are largely invalid and un-interpretable for any
form of further use in scene understanding.

Figure 3: Basic cost matching approaches applied to simulated cross-spectral stereo

Furthermore, we evaluate variants of both the regular and the hierarchical (fixed win-
dow size) Mutual Information (MI) techniques of [10] and [12, 11] and a dense Local Self-
Similarity (LSS) approach [31] (LSS descriptors used analogous to our HOG proposal) on
both of these simulated cross-spectral stereo pairs together with our own HOG approach
(Figure 4). In Figure 4 we see, for both “parking meter” (upper) and “shrub” (lower), a set
of results comparable both to the performance of ZNCC (gradient magnitude) and to the ref-
erence optical stereo depth image (Figure 2, centre right). Dense gradient features are shown
to at least match the performance of prior work based on this evaluation over simulated
cross-spectral stereo imagery.
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Figure 4: Advanced cost matching approaches applied to simulated cross-spectral stereo

3.2 True Cross-Spectral Stereo
We show the results of our proposed approach using a stereo rig consisting of an un-cooled
far infrared camera (Thermoteknix Miricle 307k, spectral range: 8-12µm) and an optical vis-
ion camera (Visionhitech VC57WD-24, spectral range: ∼400-700nm). Both cameras provide
imagery at 640x480 resolution and are mounted on a mobile platform. All parameters are
set as in Section 3.1 apart from ZNCC/MI w = 21 and MI λ = 0.3 (see [16, 11]). Results
are illustrated over a range of scenes, in varying conditions and compared over variants of
matching feature utilisation and optimisation (Sections 2.2 - 2.3).

Figure 5: Cross-spectral stereo imagery (A) and calculated depth results (B)

Figure 5A shows a cross-spectral stereo scene (stereo left image = top, stereo right im-
age = bottom) from which Figure 5B shows the depth image results obtained with each of
ZNCC (gradient pre-processing) [16], MI [10], hierarchical MI [11], LSS [31] and our pro-
posed approach with a simple WTA selection approach. The contrast between these results
(Figure 5B) and those of the same techniques on the simulated imagery in Figure 4 is notable,
suggesting true cross-spectral matching is significantly more challenging than the simulated
case considered to date [19, 10, 12, 11].

Figure 6 shows the depth images obtained from the same cross-spectral stereo scene (i.e.
Figure 5A) using HOG matching costs with each of the SO, DP, GC and SGM optimisation
approaches. From the results on this scene (Figures 5 and 6) we can see that although all of
the matching approaches perform poorly without optimisation (i.e. WTA, Figure 5B), it is
possible to improve this performance under optimisation using strong smoothness constraints
(Figure 6). This results in the recovery of varying levels of coherent scene depth suitable
for scene understanding and reasoning. Pairwise we see the SO/DP techniques [25] and
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Figure 6: Cross-spectral stereo depth results with varying optimisation approaches

GC/SGM [29, 15] techniques producing somewhat similar results (Figure 6).

Figure 7: Cross-spectral evaluation scenes 1-4
From our initial results of Figures 5 / 6 we further compare the use of ZNCC (gradient)

[16], MI [10], LSS [31] and the proposed dense HOG approach under two optimisation
approaches (DP / SGM [25]). Whilst representative of the results of Figure 6, these are
potentially achievable within real-time performance bounds [25, 14]. This comparison is
performed over the four cross-spectral stereo scenes shown in Figure 7 with the results for
scenes 1 and 2 shown in Figure 8 and those for scenes 3 and 4 shown in Figure 9. In the
absence of explicit ground truth we base our evaluation on qualitative comparison of :- a)
the cohesivity, connectedness and clarity of the resulting depth images and b) a comparison
to that achieved over the same scene using optical stereo between two visible band cameras
mounted on the same stereo rig (using Census based matching costs [16]). This reference
is designed to provide grounding to the cross-spectral results in terms of what is possible
using an established visible-band stereo technique under the same scene conditions. In the
results shown the disparity outputs of SGM are additionally post-processed using left-right
consistency checking and speckle removal [15].

In Figures 8 and 9 we can see that the use of dense HOG features (bottom, highlighted
red) generally outperforms the other approaches, under both of the DP and SGM optim-
isation approaches, based on our evaluation criterion. They also offer results that are most
similar in quality to those achievable under the same conditions using regular optical stereo
(top, highlighted blue). In general, the performance of the dense HOG features under SGM
optimisation can be seen to offer clearer and more cohesive depth image results than the
same with DP optimisation. Furthermore, combined HOG+SGM stereo facilitate results that
are most similar to those achievable with the regular optical stereo. This is most notable in
scene example 2 (Figure 8 right) and scene example 4 (Figure 9 right) where notably large
foreground objects are present. To a lesser extent this can also be seen in scene example 1
(Figure 8 left) and scene example 3 (Figure 9 left).

Overall, Figures 6 - 9 show that dense gradient features, based on our proposed HOG
descriptor approach, combined with a strong optimisation approach facilitate viable cross-
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Figure 8: Cross-spectral stereo results for scene examples 1 (left) and 2 (right)

Figure 9: Cross-spectral stereo results for scene examples 3 (left) and 4 (right)
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spectral stereo for the recovery of consistent (yet notably coarse) dense depth scene inform-
ation. These depth image results could readily form the basis for further object localisa-
tion, obstacle avoidance and alike [13, 18] as part of a scene understanding approach which
has hitherto been unavailable from a cross-spectral sensing arrangement. Whilst the au-
thors fully accept that the rigour of this evaluation criteria falls short of the ground-truth
comparison of the seminal Scharstein and Szeliski study within the field of conventional
stereo [25], it is nevertheless apparent that the presented method outperforms previously
proposed approaches [10, 11, 16, 31] for truly dense correspondence computation under the
experimental conditions shown. Presently, the approaches implemented are not optimised
(or parallelized) for run-time performance but indicative run-times for a single stereo pair
(640×480) on a 2.4GHz Intel Core i5 CPU are:- MI (~360 s.), ZNCC (~120s.), LSS (~60s.)
and HOG (~6s.) (for results shown in Figure 8 and 9).

3.3 Temporal Consistency
For completeness, we show temporally consistent depth is recovered over two illustrated
sequences for objects visible in both camera views using combined HOG features and SGM
(Figure 10 left and right, sub-sampled at 1Hz from 15 f ps video). This is achieved without
explicit temporal consistency constraints.

Figure 10: Cross-spectral stereo sequences with HOG+SGM depth recovery

4 Conclusions
Cross-spectral stereo matching can be achieved by using dense gradient features producing
a scene depth image usable for further scene analysis and understanding. This extends prior
work which is limited to simulated cross-spectral results [10, 19, 12, 11], image registration
[4] or isolated object depth recovery [21, 22, 31]. By contrast, we show full scene depth
recovery comparable in quality to standard optical stereo techniques under identical scene
conditions. We illustrate that dense gradient feature approaches outperform methods based

Citation
Citation
{Gaszczak, Breckon, and Han} 2011

Citation
Citation
{Katramados, Crumpler, and Breckon} 2009

Citation
Citation
{Scharstein and Szeliski} 2002

Citation
Citation
{Scharstein and Szeliski} 2002

Citation
Citation
{Egnal} 2000

Citation
Citation
{Fookes and Sridharan} 2008

Citation
Citation
{Hirschmüller and Scharstein} 2009

Citation
Citation
{Torabi and Bilodeau} 2011

Citation
Citation
{Egnal} 2000

Citation
Citation
{Kim, Kolmogorov, and Zabih} 2003

Citation
Citation
{Fookes, Maeder, Sridharan, and Cook} 2004

Citation
Citation
{Fookes and Sridharan} 2008

Citation
Citation
{Bodensteiner, Huebner, Juengling, Mueller, and Arens} 2010

Citation
Citation
{Krotosky and Trivedi} 2007

Citation
Citation
{Krotosky and Trivedi} 2009

Citation
Citation
{Torabi and Bilodeau} 2011



10 PINGGERA, BRECKON, BISCHOF: CROSS-SPECTRAL STEREO MATCHING

on prior work using Mutual Information (MI) [10, 12, 11] and Local Self-Similarity (LSS)
features [31]. Furthermore, we show that prior results on radiometric image differences
[16] or simulated imagery [10, 19, 12, 11] do not readily transfer to the true cross-spectral
case. The prevalence of dense gradient approaches, notably dense Histograms of Oriented
Gradient (HOG) features, over a range of disparity optimisation approaches is shown with
improved results under strong optimisation criteria of Graph Cuts (GC) [6, 29] and Semi-
Global Matching (SGM) [15]. Although the results remain somewhat coarse in comparison
to contemporary work in optical stereo [16, 30], this work illustrates both :- a) the addi-
tional challenge of cross-spectral stereo in comparison to other stereo matching cases (e.g.
radiometric differences [16]) and b) that results suitable for further scene analysis and under-
standing are achievable via a dense gradient feature approach. Future work will investigate
both explicit evaluation against ground truth and consideration of further efficient dense
gradient representations [30, 17] towards achieving real-time cross-spectral stereo.
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