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Abstract

We present a novel closed-form solution for the joint self-calibration of video and
range sensors. The approach single assumption is the availability of synchronous time of
flight (i.e., range distances) measurements and visual position of the target on images ac-
quired by a set of cameras. In such case, we make explicit a rank constraint that is valid
for both image and range data. This rank property is used to find an initial and affine
solution via bilinear factorization, which is then corrected by enforcing the metric con-
straints characteristic for both sensor modalities (i.e., camera and anchors constraints).
The output of the algorithm is the identification of the target/range sensor position and the
calibration of the cameras. The application extent of our approach is broad and versatile.
In fact, with the same framework, we can deal with, but not restricted to, two very dif-
ferent applications. The first is aimed at calibrating cameras and microphones deployed
in an unknown environment. The second uses a RGB-D device to reconstruct the 3D
position of a set of keypoints using the camera and depth map images. Synthetic and real
tests show the algorithm performance under different levels of noise and configurations
of target locations, number of sensors and cameras.

1 Introduction
The technological advancement of distributed sensor architectures generates systems that are
inherently multi-modal. In particular, different sensor modalities are often coupled together
in order to compensate for the deficiencies of a single-modality alone. For instance, video
cameras are certainly the most versatile sensors that might reach very high-resolutions at high
frame rates while being subject to all the problems given by saturation, lens aberrations, etc.
Such problems might affect Computer Vision algorithms dedicated to a specific task. As an
example, if we have to detect the background and foreground objects, the variability of the
object texture can render the problem rather complex. Coupling a range device could clearly
simplify the problem since segmentation in depth images, in comparison with the vision
counterpart, might be considered trivial. Obviously, a depth device alone would not preserve
the appearance of objects and might be restricted to lower resolution, so that a coupled
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camera is an essential aid for tasks such as object recognition. Similarly, for audio data,
vision has been coupled with the output of a microphone in order to robustify the localisation
of a given target [1, 4, 18]. These methods normally require an accurate calibration of both
cameras and microphones, a solution in most cases impractical if not using a particular and
a priori known displacement of the sensors. These are just a few examples, however there
exists multi-modal algorithms that use inputs of video together with thermic images [16],
RFID [7, 11], etc. to obtain a more robust task-driven perfomance.

In order to obtain a successful sensor data fusion, a key issue is to obtain a precise align-
ment of the different sensors. In particular, we deal with the case of video and range sensors
where for the latter we consider any devices that can measure a distance from a target. More-
over, we specifically deal with the case of several sensors deployed in an unknown area and
unknown positions of targets. This scenario for instance fits well in the case of heterogeneous
sensor networks but also for single devices such as the Kinect that can measure several dis-
tances (i.e., a depth image) taken in an indoor area. Even if the setups are different, all
these problems result in the same self-calibration problem which aims to the simultaneous
localisation of sensors and targets.

In particular, this problem is rather critical when attempting to localise a certain target
immersed in a sensor network. Such problem is possibly the most interesting and, often, the
same very reason why a network is deployed. As an example, in wireless sensor networks
one would like to monitor in real-time the location of devices of interests [17] such as the
equipments in a hospital. In video-surveillance, dangerous targets should be localised before
the situation may degenerate [5]. Military applications might also use a sensor network in
order to identify ground targets [8] or hidden snipers in a combat area [24]. Workers may
also be localised in order to warn them that they are trespassing a dangerous area in a factory
[9].The common aspect among all these scenarios is that they all need precise measurements
of the target position. Indeed, this is possible only if the calibration of the heterogeneous
sensors is known and accurate. Though in recent years some approaches [10, 12] have
been proposed for the joint calibration of range sensors and video cameras, they require a
specific calibration pattern and, as a consequence, cannot in general be easily adapted to the
aforementioned problem.

In this paper, we introduce a novel self-calibration problem where cameras and range
sensors are measuring the position of a target. In such problem, both the positions of sen-
sors, cameras and the target are unknown apart from the knowledge of (few) sensor anchors.
Interestingly, if the anchors are not available, the system is still able to provide a solution
using solely metric constraints from the cameras. The solution of the self-calibration prob-
lem will provide the 3D localisation of the target, the position of the range sensors and the
cameras calibration.
The remainder of the paper introduces the formalisation of the self-calibration problem in
the range (Sec. 2) and camera (Sec. 3) case. The following Sec. 4 defines the joint self-
calibration as a factorization problem with specific metric constraints given by both modal-
ities. Sec. 5 presents the synthetic results for a typical multi-view camera and microphone
calibration problem while the real test uses data coming from a Kinect device. Conclusions
in Sec. 6 draw the path for possible extensions of the proposed method.

2 Range sensors calibration
Let us consider m range sensors and n targets that generate the range signal detected by the
sensors, both of them laying in a 3D space. The sensor and target coordinates can be stored
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respectively in a m×3 matrix S and an 3×n matrix T defined as follows:

S=


s11 s12 s13
s21 s22 s23
...

...
...

sm1 sm2 sm3

 and T=

t11 t21 · · · tn1
t12 t22 · · · tn2
t13 t23 · · · tn3

 . (1)

where sil and til are the l-th coordinate of the i-th range sensor and target respectively. The
first a sensors in S, with a ≥ 0, are considered to be anchors i.e. their 3D coordinates are
a priori known, whereas the coordinates of remaining m−a sensors and the coordinates of
all targets are unknown. Each range sensor, including the anchors, is supposed to estimate a
distance between itself and each of the targets. For the sake of generality we do not consider
a specific procedure for the distance estimation but we can mention that the great part of
range sensors relies on two principles. First, the time of flight between sensor and target
is measured and distance is founded simply dividing by the signal velocity in the medium.
Second, the distance is estimated by measuring the signal intensity at the sensor and compar-
ing it with the known emission strength. The square of the estimated distances di j between
generic sensor i and target j can be stored in an m×n matrix D defined as follows:

D=


d2

11 d2
12 · · · d2

1n
d2

21 d2
22 · · · d2

2n
...

...
. . .

...
d2

m1 d2
m2 · · · d2

mn

 . (2)

In an ideal situation, assuming that each estimated distance is equal to the actual one, the
following set of nm equations hold for i = 1 . . .m and j = 1 . . .n:

s2
i1 + s2

i2 + s2
i3 + t2

j1 + t2
j2 + t2

j3−2si1t j1−2si2t j2−2si3t j3 = d2
i, j. (3)

In order to obtain a bilinear form in the sensors and events coordinate vectors, the first six
quadratic terms in the above equations have to be eliminated [6]. To this aim one can subtract
the 1, j-th equation to the i, j-th equation in (3) for i = 2 . . .m and j = 1 . . .n, obtaining a set
of (m−1)n equations.

s2
i1 + s2

i2 + s2
i3− (s2

11 + s2
12 + s2

13)−2(si1− s11)t j1

−2(si2− s12)t j2−2(si3− s13)t j3 = d2
i, j−d2

1, j.
(4)

In the same way, subtracting the i,1-st equation to the i, j-th equation in (4) for i = 2 . . .m
and j = 2 . . .n, one obtains a set of (m−1)(n−1) equations:

−2(si1− s11)(t j1− t11)−2(si2− s12)(m j2−m12)+

−2(si3− s13)(t j3− t13) = d2
i, j−d2

1, j−d2
i,1 +d2

1,1.
(5)

The very same operations can be expressed in matrix form by first defining the following
special vectors/matrix:

e>j = (0, . . . ,0,1,0, . . . ,0), 1>b = (1, . . . ,1), Pb =
[
0 I

]
.

where e j represents a vector of zeros with a single 1 at position j and 1b represents a vector of
b ones. The square matrices P(b−1)×b and P>b×(b−1) instead remove the first row and column
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via left and right matrix multiplications respectively. It is possible to remove the quadratic
terms from D such as:

D̂= D−1me>1 D− (D−1me>1 D) e11>n = D−1me>1 D−D e11>n +1me>1 D e11>n . (6)

Now we can eliminate the zero-row and zero-column of D̂ such as:

D̃= Pm D̂ P>n =


d̃1,1 d̃1,2 · · · d̃1,n−1
d̃2,1 d̃2,2 · · · d̃2,n−1

...
...

. . .
...

d̃m−1,1 d̃m−1,2 · · · d̃m−1,n−1

 . (7)

where d̃i−1, j−1 = d2
i, j− d2

1, j− d2
i,1 + d2

1,1. Let us organize the remaining terms in (5) in the
following matrices as:

S̃=


s21− s11 s22− s12 s23− s13
s31− s11 s32− s12 s33− s13

...
...

...
sm1− s11 sm2− s12 sm3− s13

 , ~T=

t21− t11 t31− t11 · · · tn1− t11
t22− t12 t32− t12 · · · tn2− t12
t23− t13 t33− t13 · · · tn3− t13

 ; (8)

where ~S = Pm (S− 1me>1 S) and T̃ = (T−Te11>n )Pn. Using the previously defined matrices
the set of equations in (5) can be expressed in a matrix form as:

−2~S~T= ~D. (9)

The (m− 1)× (n− 1) matrix ~D has rank equal to three since it is a product between the
(m−1)×3 matrix −2~S and the 3× (n−1) matrix ~T. If we apply a SVD to the data matrix
~D we have, in case of no noise, that the singular values after the third are equal to zero. Thus
we can truncate these SVD components such as:

UVW= ~D, (10)

where U is an (m−1)×3 matrix, V is a 3×3 diagonal matrix and W is a 3× (n−1) matrix.
In a practical situation, in presence of measurement noise, the rank of ~D will be probably
higher than three: in this case only the three biggest singular values in V will be considered
reducing the size of U, V and W according to the noise-free case. From (9) and (10), for every
invertible 3×3 matrix C, the following relationships hold:

−2~S= UQs and ~T= Q−1
s VW.

The matrix Qs is called the “mixing matrix” since it mixes the components obtained from the
SVD in order to obtain the correct solution given the original sensors localization problem.
The matrix Qs can be found exploiting the a priori knowledge on anchors position by the
following procedure. By defining the matrix Ā as the first a− 1 rows of matrix U, and the
matrix Ã of dimension (a−1)×3 as

Ã= Pa (A−1ae>1 A) (11)

where A is the matrix of the known coordinates of anchors, the following equality holds:

ĀQs =−2Ã (12)
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which can be solved with LS if at least four anchors are present. If no anchors are available
the relative position of sensors and targets can be found for less than a 3D translation and
rotation. In such case, the mixing matrix Qs can be derived in closed form [6] providing that
at least one sensor is coincident with one target. Alternatively, if at least five targets and ten
sensors or viceversa are available, the closed form solution proposed in [22] can be adopted.

3 Video cameras calibration
In this work, we define the camera self-calibration problem as the contemporaneous com-
putation of the parameters of an affine camera and the 3D position of a target solely from
image measurements. In particular, a target can be defined as a collection of a set of 3D
points stored in a matrix T as defined in the previous section. Each of the n points is pro-
jected onto each camera image frame using a camera projection matrix such that:

(
uk j
vk j

)
=
[
Rk zk

]
t j1
t j2
t j3
1

 (13)

where uk j and vk j represents the two image coordinates of the target j as seen by camera k.
The 2×3 matrix Rk and the 2-vector zk are the parameters of the camera that is considered
to be affine in such scenario. The affine camera matrix approximation holds in real scenarios
where the target is imaged at distance so favoring in particular outdoor sensor networks.
Given the set of targets T we can write the image coordinates of the target as:

Gk =

(
uk1 · · · ukn
vk1 · · · vkn

)
=
[
Rk zk

]
t11 · · · tn1
t12 · · · tn2
t13 · · · tn3
1 · · · 1

=
[
Rk zk

][ T

1>

]
, (14)

where the matrix Gk of size 2×n contains the image target positions for the camera k. With
multiple cameras and a single target moving, we can build a set of equations such as:

G=

 G1
...
Gc

=


[
R1 z1

]
...[

Rc zc
]
[ T

1>

]
= C

[
T

1>

]
, (15)

where the 2c× 4 matrix C contains the c camera matrices. The bilinear form of equation
(15) implies a rank 4 constraint on the image measurement matrix G. In the case of affine
cameras, the image measurements may be registered to the image centroid of the cameras or
aligned to a selected image point (e.g. the first target in T) such as:

G̃= (G−g11>n )P
>
n =

 R1
...
Rc

 T̃= C̃T̃ (16)

where 1n is a vector of n ones and g1 is a 2c×1 vector containing the image measurements
of the first target i.e. g1 = [u11,v11, . . . ,uc1,vc1]

>. The matrix form in eq. (16) is a classical
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formulation of the Structure from Motion (SfM) problem for a moving camera. Such formu-
lation is popular in Computer Vision because it led to efficient closed form solutions to both
3D reconstruction and camera calibration. The seminal work of Tomasi and Kanade [27]
first proposed an efficient solution for the orthographic camera case that was successfully
extended to more complex camera models (e.g. [25], [15] to cite a few).

To summarise, given the input data in G̃, it is possible to obtain a first decomposition of
the bilinear components by means of a standard SVD truncated to rank 3 in a very similar
manner as obtained for the distance measurements in eq. (10). With an abuse of notation we
keep the same symbols for the SVD values giving G̃ = UVW where U is a 2c×3 matrix, V is
a 3×3 diagonal matrix and W is a 3× (n−1) matrix. Similarly as in the range sensor case,
this decomposition is not unique and there exists a mixing matrix Qv such that:

C̃= UQv and T̃= Q−1
v VW (17)

The key element for solving Qv is to exploit the constraints imposed by the specific camera
models. Notice that the affine camera matrix Rk can assume specific forms given such con-
straints; in particular we have that is a scaled orthographic camera matrix if RkR

>
k = skI2.

Now notice that each camera model enforces a specific constraint on the elements of C̃. Thus
we compute the matrix Qv that enforces exactly the constraint in the chosen camera model.
In order to simplify the notation, from this point we will choose the scaled orthographic cam-
era model, however notice that the proposed solution might be applied for more descriptive
camera models [14, 15, 21]. Thus, if we divide the U matrix from SVD into 2×3 sub-blocks
as U> =

[
U>1 · · · U>c

]
we have that Qv has to satisfy a set of c equations such that:

UkQvQ
>
v U
>
k = skI2. (18)

These constraints are quadratic in Qv therefore not solvable in closed form. However, a
convenient solution is found by considering the symmetric matrix Hv = QvQ

>
v and by rewriting

the system in the 6 unknowns of Hv. For a scaled orthographic camera matrix we have two
equations for each camera thus requiring at least 3 cameras for obtaining a unique solution for
Hv. After recovering Hv via LS, the matrix Qv can be found with a Cholesky decomposition 1.
The LS equations for the matrix Hv will be presented in the next section since they will lead
to the joint solution of the self-calibration problem.

4 Joint self-calibration of visual and range sensors
The common property for solving jointly the self-calibration problem is that both measured
data sussist on a common subspace as defined by the target position T. This fact emerges
clearly only after reducing both the measured data to rank 3 bilinear models in the respective
domains. The consequence is that the fusion of the modalities is for the first time strictly
geometrical, in the sense that the data is now explicitly linked by the metric position of the
targets. This leads to the possibility of computing a joint closed form solution using the
range-visual constraints of the heterogeneous sensors. The measurements from range and
visual sensors form the measurement matrix Y of size (m+2c−1)× (n−1) such as:

Y=

[
D̃

G̃

]
=

[
−2S̃
C̃

]
T̃.

1Choleski decomposition requires the matrix Hv to be positive definite. This requirement is satisfied most of the
time with mild noise conditions and without outliers in the measured data. If Hv is not positive definite after the
least square solution, it is possible to revert to a SDP problem where the condition Hv � 0 can be imposed explicitly.
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Here the same target position has to be subtracted from both range and image measure-
ments. Thus a single SVD can be used in order to obtain a first factorization that can be
then upgraded to metric with a custom solution. Notice that it might be necessary a data
normalization in order to balance the results of SVD. This is because the range of values
between image coordinates might be rather different 2. As a rule of the thumb, we compute
a scale factor such that ‖D̃‖F = ‖G̃‖F so as to evaluate equally visual and range data when
performing SVD. Now, the SVD provides again a tern UVW that has to be transformed by a
3×3 mixing matrix Q j such that:

UQ j =

[
Us
Uv

]
Q j =

[
−2S̃
C̃

]
. (19)

The mixing matrix Q j can be found by putting together the constraints related to both
anchor positions and scaled orthographic camera models. In particular for the image data,
constraints related to the k-th camera are given by UkHU

>
k = skI2 where H is a symmetric

matrix defined as H= Q jQ
>
j , as in Eq. (18). The constraints related to the i-th camera can be

recast in two equations giving [15]:

u>i1Hui2 = 0 and u>i1Hui1−u>i2Hui2 = (ui1−ui2)
>H(ui1 +ui2) = 0, (20)

where ui1 and ui2 constitute the i-th block of the matrix Uv as follows:

Ui =

[
u>i1
u>i2

]
. (21)

These equations in (20) can be written in vector form [3] for the elements of H defining:

vc(ui1,ui2) = vech(ui1u>i2−ui2u>i1−diag(ui1�ui2)), (22)

where vech() is the operator that vectorizes symmetric matrices. Thus, we can define a LS
problem for each camera using (22), such that:

Ûivech(H) = 0 where Ûi =

[
(vc((ui1,ui2)))

>

(vc(ui1−ui2,ui1 +ui2))
>

]
. (23)

Similarly, we have now to embed the range constraints into a LS form in order to solve
jointly for the video-range constraints. If we consider again Eq. (12), we have that:

ĀHĀ
> = 4ÃÃ>. (24)

The matrix equation (24) can be written element-wise as follows:

ā>i Hā j = ã>i ã j, (25)

for i, j = 1 . . .a− 1 where ā>i and ã>i are the i-th row of matrices Ā and 4Ã respectively.
Exploiting the same formalism defined in (22), Eq. (25) can be written as:

âi jvech(H) = ã>i ã j where âi j = vc(āi, ā j). (26)

2For instance, current HD cameras allows the image coordinates in G to range from zero to 1920 while the
distance values measured depends by the chosen metric unit.
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Since vc() is a symmetric operator, only (a− 1)a/2 of (a− 1)(a− 1) linear constraints
defined in (26) are independent. As a consequence, the anchor constraints can be expressed
in a matrix form as Â vech(H) = ă, where the (a− 1)a/2× 3 matrix Â and the (a− 1)a/2
vector ă are defined as:

Â
>
=
[
â>11 · · · â>1a−1 â>22 · · · â>a−1a−1

]
(27)

ă> =
(
ã>1 ã1 · · · ã>1 ãa−1 ã>2 ã2 · · · ã>a−1ãa−1

)
. (28)

This last step allows to write the final equation embodying the camera and range sensor
constraints: [

Â

Û

]
vech(H) =

[
ă
0

]
, where Û

>
=
[
Û
>
1 Û

>
2 · · · Û

>
c

]
. (29)

Equation (29) can be solved with a pseudo-inverse if at least 6 equations are present:

vech(H) = (F>F)−1F>r where F=

[
Â

Û

]
and r =

[
ă
0

]
. (30)

Notice here that, differently from the single modality case, the minimal number of equations
can be mixed between cameras and range sensor (i.e. we do not need a minimum of 3
cameras and 4 anchors in order to have a solvable problem). In general each camera provide
two constraints, while a anchors provide (a− 1)a/2 constraints, as can be seen from the
previous equations. As a consequence, an interesting mixed minimal configurations exist of
two cameras and three anchors, besides the configuration with no anchors (three cameras)
and no cameras (four anchors). Finally, notice that if four anchors are available, the proposed
approach has the further property of eliminating the rotational gauge freedom of the problem
[2, 13].

5 Experiments
Synthetic Test. A set of synthetic experiments has been performed in order to evaluate the
self-calibration algorithm with varying numbers of cameras, range sensors and targets. This
setup is normally representative of a sensor calibration scenario [8, 26] and target localisation
problems from randomly displaced sensors [19, 23]. Cameras, sensors and targets were
randomly displaced into a cubic region according to a uniform distribution. A measurement
noise was added to the distances measured by range sensors and to the pixel position of
targets in camera images. We defined the noise magnitude in relation to the data Frobenius
norm in order to make them comparable. Thus we introduced two normalized noise measures
Nr (range error) and Nc (camera error) such that:

Nr = ‖N1‖F /‖D‖F and Nc = ‖N2‖F /‖ W‖F , (31)

where ‖·‖F is the Frobenius norm, D is the matrix of distances among range sensors and
targets, N1 and N2 are two matrices of size m×n and 2c×n respectively whose elements are
realizations of a zero mean Gaussian PDF. Similarly, in order to quantify the error on the
position estimation of targets the following metric is adopted:

Et = ‖T−TGT‖F /‖TGT‖F , (32)
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Figure 1: Left image shows a surface plot of the target reconstruction 3D error with respect
to varying number of targets and cameras. The right image shows the same evaluation with
respect to varying number of targets and range sensors.

where TGT is the ground truth matrix of targets 3D coordinates whereas T is its estimated
counterpart. Each experiment has been repeated 2000 times, each time changing the ran-
dom 3D configuration of cameras, range sensors and targets and the noise. The left plot of
Figure 1 shows the average Et in function of the number of targets (10,15,25,50,80,150),
range sensors (10,15,25,50,80,150), 20 cameras, 5 anchors, Nr = 0.028 and Nc = 0.013
(we simulated the likely case when range measurements are less precise than image mea-
surements). At a first sight, it is possible to see that the error surface is decreasing at the
increase of the number of targets/sensors reaching a minimum value of Et = 0.0301 for
the target/sensor pair (150,25). The maximum error of Et = 0.055 is achieved for the pair
(10,10). In general, a quasi-constant value of Et (about 0.032) is observed for above 25
sensors and targets.exceeeds 50. This last behaviour is easily explanaible considering that,
as Nr > Nc, increasing the number of range sensors in respect to cameras the more noisy
range data prevail in the measurement matrix Y. The right plot of Figure 1 shows the average
Et in function of the number of targets (10,15,25,50,80,150) and cameras (3,6,10,15,20),
150 range sensors and keeping unaltered the other parameters. In this case the highest re-
construction error (Et = 0.047) is obtained for 10 targets and 3 cameras, whereas the lowest
one (Et = 0.032) is obtained for 150 targets and 20 cameras. Notice that Et is monotonically
decreasing with the number of cameras except for 15 range sensors where a slight increase
is present moving from 10 to 15 cameras.
Real Test. The new brand of RGB-D devices generates a high number of range measure-
ments coupled with standard images. Here, our targets are represented by a set of image
point trajectories tracked in a video grabbed by a Kinect sensor (check Figure 2a). Depth
and standard images were previously aligned using the proprietary intrinsic camera model of
PrimeSense by using their development framework OpenNI [20]. In such way, at each im-
age coordinate would correspond the correct depth value. By applying our self-calibration
algorithm to the data matrix Y of size 533× 69 we obtained the 3D position of each point
(the targets) together with the 3D location of the depth sensor and standard camera parame-
ters. The several planar surfaces of the scene have been reconstructued correctly given both
information from depth and standard images.

6 Conclusions
To the authors knowledge, for the first time we have presented a new geometrical constraint
for the fusion of information acquired from standard video camera and range sensors. Such
theoretical result leads to a closed-form solution for the self-calibration of heterogeneous
sensors that is able to accurately localise the 3D position of both sensors and the targets. This
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a) b) c)

Figure 2: The Kinect test. a) shows on top two image samples of the image sequence used
for the joint reconstruction. The figures on the bottom are the corresponding depth images.
b) shows a frontal view of the 3D reconstruction while c) presents a side view aligned with
the biggest box in the scenario showing the expected planarity of the object.

new result is of practical application in many scenarios. Future works will be dedicated to
the use of this new constraint in several audio-video applications such as speaker localisation
and tracking. On the theoretical aspects, an extension to the missing data case is a direction
to follow in order to deal with the most complex network topologies.
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