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Abstract

The corneal imaging technique enables extraction of scene information from corneal
reflections and realizes a large number of applications including environment map re-
construction and estimation of a person’s area of view. However, since corneal reflection
images are usually low quality and resolution, the outcome of the technique is currently
limited. To overcome this issue, we propose a first non-central catadioptric approach to
reconstruct high-resolution scene information from a series of lower resolution corneal
images through a super-resolution technique. We describe a three-step process, includ-
ing (1) single image environment map recovery, (2) multiple image registration, and (3)
high-resolution image reconstruction. In a number of experiments we show that the pro-
posed strategy successfully recovers high-frequency textures that are lost in the source
images, and also works with other non-central catadioptric systems, e.g., involving spher-
ical mirrors. The obtained information about a person and the environment enables novel
applications, e.g., for surveillance systems, personal video, human-computer interaction,
and upcoming head-mounted cameras (Google Glass [5]).

1 Introduction

In order for us humans to perceive the visual information of the surrounding environment,
the cornea and the lens of the eye focus incoming light to form a sharp image on the retina.
A part of the light arriving at the corneal surface reflects back into the environment, and
an image of this reflection essentially captures a superset of the information arriving at the
human visual system. The analysis of corneal reflection images can, therefore, obtain scene
information just like a persons’s perceived view. This so-called corneal imaging technique
enables the computation of a scene panorama and 3D model, together with the person’s field
of view and point of gaze [15]. The obtained environment map of incident illumination
further enables general applications in vision and graphics, such as face relighting, recon-
struction [14, 15, 28] and recognition [16]. Due to its large potential, recent science fiction
works showcase several exciting applications [19, 20]. For example, by applying corneal
imaging to surveillance video footage that shows a persons’s facial region, they obtain de-
tailed information about the surrounding scene, revealing a human face or printed fabric
patterns the person looks at. In reality, however, even if we manually capture images with a
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Figure 1: The algorithm consists of three parts: (A) eye pose estimation and initial envi-
ronment map extraction for each LR image (Sec. 3), (B) registration of environment maps
and optimization of system parameters (Sec. 4) and (C) super-resolution estimation for HR
image reconstruction (Sec. 5).

high-resolution camera that is placed near to the eye and carefully adjusted to avoid focus and
motion blur, the quality of corneal reflections is largely limited due to several factors. These
include the low resolution of the eye region and the large field of view of the corneal mirror;
the low contrast as the reflectivity of the cornea is less than 1% [10]; the contamination with
iris texture reflections [30]; and the distortions from an unknown corneal geometry.

To overcome these issues, this paper introduces a super-resolution (SR) technique to
reconstruct a high-resolution scene image from multiple low-resolution corneal reflection
images. This enables detailed scene information from a time-series of corneal shots such as
in surveillance or personal videos.

A straightforward approach to obtain high-resolution scene information would be to di-
rectly apply an SR algorithm to the recorded eye images. However, due to the following
reasons, this does not work: First, the corneal image is formed by a non-central catadioptric
system, as the result of a specular reflection at the corneal mirror (with only approximately
known geometry) and a perspective projection. Thus, while registration is a key requirement
for multiple image SR, the corneal images can not be aligned through perspective or other
linear transformations. Second, for the same reason, we cannot obtain high-resolution scene
information even from a single high-resolution corneal image.

To enable SR for corneal imaging, we propose the following approach: First, we calcu-
late a spherical environment map around the corneal surface from a single image by applying
a geometric eye model, 3D eye pose estimation and light path reconstruction. Then, we per-
form a coarse alignment to register the environment maps from multiple images and optimize
eye pose parameters. Next, we set up a local plane that is tangent to the environment map
sphere at a user-defined region of interest, project the maps to this plane, and perform a fine
alignment. Finally, we apply an SR technique to the combined registered corneal reflections
in the tangent plane. Figure 1 shows an overview of the proposed algorithm.

2 Related Work

In the following, we discuss the relation of this work to the fields of corneal reflection anal-
ysis and super-resolution.
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Figure 2: Geometric eye model. Figure 3: Eye pose estimation.

Corneal reflection analysis: Nishino and Nayar [15] first formalize the imaging charac-
teristics of the eye-camera geometry and introduce the corneal imaging technique. They
show how the extracted environment map can be applied for the computation of scene
panoramas and subject views, face relighting, and face recognition [14, 16]. Recently,
Backes et al. [3] analyze the point spread function of the corneal reflection system and de-
scribe a non-blind deconvolution method to recover clear scene information from a single
corneal image under focus and motion blur. Johnson and Farid [8] analyze specular high-
lights in the eyes of different persons depicted in the same image to expose digital forgeries.

Super-resolution: Many algorithms have been proposed in super-resolution literature [9,
12, 17, 26]. The reconstruction based algorithm is a popular technique that performs sub-
pixel registration of multiple low-resolution images, followed by iterative optimization to
estimate a high-resolution image [18, 22]. Most works assume perspective camera optics,
where multiple images can be aligned using linear transformations as the projection of the
scene is described by linear systems. There are a few studies on SR under non-linear op-
tics: Nagahara ef al. [13] use a catadioptric system with a hyper-omnidirectional mirror.
They reconstruct a high-resolution scene image from images captured while slightly rotating
the system with respect to the scene. Arican et al. [2] use a similar optical system and intro-
duce Spherical Fourier Transform (SFT) to reconstruct a high-resolution spherical light map.
These works assume central catadioptric systems (having a single focal point), where the rel-
ative position between mirror, lens and camera remains fixed [25]. On the other hand, our
configuration results in a dynamic non-central catadioptric system that requires handling of
non-single focal point optics and per-frame calibration through eye/mirror pose estimation.

3 Environment map reconstruction from corneal image

3.1 Eye pose estimation

The human eyeball can be closely approximated as two overlapping spheres with different
radii of curvature. Figure 2 shows a cross-section of the eye and its geometric model that
is used to estimate the 3D pose of the eye and calculate corneal reflections. The cornea is
modeled as a spherical cap, cut off from the corneal sphere by the limbus plane. The average
radius of the limbus 71, is approximately 5.6 mm [24].

The 3D pose of the eye is estimated from the imaged iris contour. When taking an image,
a projective transformation maps the 3D iris to an ellipse [7, 23], described by five parame-
ters: the center 1, the major and minor radii 7yax and rmin, and the rotation angle ¢ (Figure 3).

Iris contour detection consists of two steps: eye detection to determine if and where an
eye exists in the image, and iris contour fitting to estimate the ellipse parameters. There exists
a large number of approaches for automatic eye detection and tracking, and a suitable one
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should be chosen based on the constraints of the particular system scenario [6]. In this proof-
of-concept implementation we use a simple manual strategy, where the user selects at least
five points located on the iris contour. After that, iris contour fitting is performed automat-
ically, where initial parameters are obtained by RANSAC-based ellipse fitting through the
selected points. The parameters are then refined by an iterative robust fitting approach [11]
in the binarized edge image that is obtained through smoothing with a Gaussian filter and
extracting edges with an adaptively-thresholded Canny edge detector.

Limbus pose estimation. Assuming weak perspective projection, the 3D limbus cen-
ter L is given by L =d -1, where d = f - ri./rmax is the distance to the camera, and f is the
focal length in pixels. The gaze direction g, equal to the optical axis of the eye, is obtained
asg=[sinTsing —sinTcosd —cos ‘C}T, where angle T = +arccos(7min/max) corresponds
to the tilt of the limbus plane with respect to the image plane, and angle ¢ is already known
as it is the rotation of the limbus ellipse in the image plane.

Corneal sphere position. We are now able to calculate the center of the corneal sphere C,
located at a distance dy,c, approximately 5.6 mm from the limbus center L along —g. The
center C and the radius rc, approximately 7.7 mm [24], describe the corneal sphere that
enables to model the light-reflection properties of the corneal surface.

3.2 Environment map reconstruction

Taking an image of the eye captures the specular reflection of the scene within the bounds of
the visible iris. Assume that light from a scene point P reflects at a corneal surface point S
into the direction of the camera. Recovering the inverse light path from the imaged reflection
allows to transform the corneal image into an environment map (Figure 4 (a),(b)).

Let s = (sy,5y, I)T denote the projection of S, modeled as a ray S = #;r; with direction
ri=Kls / H K1 sH at unknown distance #; from the camera. It is obtained as the intersection
with the corneal sphere by solving the quadratic equation ||S — C||? = r2 for ; as in

f=(r1-C)t\/(r-CP—C 412 (1)

The first intersection at the front side of the cornea is described by the smaller value of ;.
Knowing S and the corresponding surface normal ng =S — C / IS —C||, the normalized di-
rection vector r; of the reflection ray is obtained by calculating the specular reflection as in

1‘2:2(—I‘1-ns)ns+l‘1. 2)
The position of scene point P then lies on the reflection ray extending from S, defined as
P =S+1#r;. Since the distance 7, between eye and scene is usually much larger than the
scale of the cornea rc, it is feasible to register the reflection ray into an environment map, as
in PEM = C+l‘21.

3.3 Local tangent plane projection

In order to undistort the reflection information for visualization and SR, we project a small
area around a user-defined point of interest onto a local tangent plane to the environment

The maximal distance diax between both rays is rc, what is easily verified as follows: Since the rays are
parallel and P is located outside the corneal sphere, the distance d can be calculated as the distance between line
C+1r; and point S, as in d = rc |y x ng| = rcsin (a), where o = Z (rz,ng). From o € [0,7/2] it then follows
that d € [0, r¢|. Furthermore, note that in the context of corneal reflections, o is commonly much smaller than the
maximum value.
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(a) (b) (c) (d)

Figure 4: Rendered system model of catadioptric back projection. (a) Camera with image
plane and back-projection rays that intersect the corneal sphere. (b) View onto partial inner
corneal surface. (c),(d) Environment map and local tangent plane at region of interest.

sphere (Figure 4 (c),(d)). Therefore, we first set up the plane coordinate frame as in
Zrp = 01p, YTP = ZTP X ((*1, 1,-1)" OZTP) , XTp = YTP X ZTP, (3)

where nrtp is the normal vector of reference point and plane, and (o) denotes the Hadamard
product (element-wise multiplication). Projecting an environment map point WPgy onto
point TPPyp in the local plane simply involves a rotation and scaling as in

T
Pey = (WR) VPem, PPrp =Py / TPy, W’R =[xp yro zre | . (4

3.4 Forward projection from local tangent plane to corneal image

So far, we formulated the back projection of corneal reflections from the image to the en-
vironment map and local tangent plane. In addition, we require the forward projection of
environmental light into the image. This is more difficult since we need to find the point
of reflection S at the corneal surface without knowing the direction of the light ray from P.
Agrawal et al. [1] recently showed that the solution for quadric-shaped mirrors requires solv-
ing a 6th-order polynomial equation. The method consists of two steps: At first, a rotation
transforms the problem into the plane of reflection. Then, the solution is constructed by en-
forcing constraints from the equality of reflection angles and the intersection of the reflected
ray with P. For the special case of a spherical mirror, this reduces to a 4th-order equation
that can be solved in closed form. We derived this solution and use it for multiple image
registration in the next section.

4 Registration of multiple environment maps

In this section we explain how to register reflections from multiple images taken under slight
eye and camera movement that occurs for example in continuous video frames or burst mode
photography. Under such a scenario, the area of interest is contained in a large number of
corneal images, which allows to select only images that are free from focus and motion blur.
Regarding the small distance between subsequent corneal sphere positions relative to the
distance between eye and environment it is feasible to assume the cornea in each frame to
be centered at the world origin. The task of alignment then amounts to finding the pose of
the camera w.r.t. the world frame. This is achieved through a multiple-step coarse-to-fine
strategy, where the initial estimate for the translation is obtained from the corneal position in
eye pose estimation.
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4.1 Coarse alignment

Coarse alignment is carried out using Ng > 2 feature correspondence matches for each LR
image that may be found using common local feature detection techniques [29] (Figure 5
(b),(c)). Particular care has to be taken for the issues related to corneal imaging, especially
geometric distortion. For this reason, it may be better to detect features in the environment
map or in local tangent plane projections rather than the corneal image. In this proof-of-
concept implementation we select the correspondences manually.

Step 1. Under the assumptions described above, the transformation between the environ-
ment maps is a rotation g R around the origin that aligns the frame of camera i with the world

frame, fixed as the frame of camera 1, with g’] R = I5. The relative rotations are estimated by
pairwise registration to the reference frame, through minimizing error functions e; (x;), as in

argmin e (x;) Z O (f,1,i) | 6((f,i1,ir)=cos™! ((gl R) r (i1, f)- (\CYZ R) r (i27f))

xi|i=2...Ny

&)
where 0 (f,i1,i) is the angle between locations of feature f in the environment maps of
image i1 and iy, and x; = ®; is a non-normalized 3-vector representing rotation g R.

Step 2. To compensate for the error in eye pose estimation we continue with a joint ad-
justment of environment map rotations and corneal sphere locations (relative to the cameras).
Without information about the scale or absolute location of the scene, however, the problem
is ill-posed”. We, therefore, first perform pairwise optimization by minimizing error func-
tions e; (x;) according to Eq. (5), where now x; = (C;,®;) and C; is fixed. The result is then

further optimized through bundle-adjusting all images in parallel, where x = (C;, ®; )l 1> by
minimizing error function e; (x) as in
N MM
argmlnez Z Z Z 61 (f,i1,02). (6)
=lij=lip=ij+1

4.2 Fine alignment

Starting from the result of coarse alignment we perform a fine alignment through image
matching in the local tangent plane at a user-defined region of interest (Figure 5 (f)).

Step 1. The region contains a set of uniform sampling points T"Prp (j)|j=1...Np. We
again perform pairwise optimization of x; = (C;, ®;), with C; fixed, but now by mmimizing
the sum of absolute differences (SAD) through error functions e3 (x;) as in

TP PN .o
argmin s () = 3 |1 (Prp ) 1 (Pegp1, )] | L) =B )
xili=2...M; = p1 (i, j) = FP (i, (W RT) ™Prp ()

(N

Here, pi (i, j) is the forward projection of point T"Prp () into the image of camera i, and I ()

is the interpolated intensity value in the image. The notation "PPrp (i, j) indicates that the
point is assigned with the intensity value from camera i.

Step 2. Finally, we perform a 2D subpixel rigid registration in the tangent plane to

correct the remaining misalignment. Similar to the last step, this is done through pairwise

2The catadioptric image formation depends on the length of the combined light path between scene, mirror and
camera. If the relation between mirror and camera is not fixed, then it is not clear whether a change in the image
results from a change in the relation to the scene or to the camera.
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(a) (b)\ V { ® ()

Figure 5: Alignment. (a) Cropped corneal regions of two eye images taken from similar
views, with 13 feature correspondences. (b) Back-projected features for the whole dataset
of 10 images, before alignment, and (c) after coarse alignment. (d) Environment map (ren-
dered from viewpoint of corneal center), before alignment, and (e) after coarse alignment.
(f) Region of interest in local tangent plane, before alignment, and (g) after fine alignment.

optimization of planar rotation and translation components x; = (t;, ¢;), by minimizing the
SAD through error functions e4 (x;) as in

Np
. . . R(g)) t
argmin e4 (x;) = Z I (Ggl‘ A) ™prp (1,])) —I(TPPTP(I,J))’ g:A = { i;pl) f ] .
xi|i=2...M j=1

®)

The result are aligned low-resolution points in the local tangent plane (Figure 5 (g)).

5 Reconstruction based super-resolution

Using the recovered optimized parameters we back project the region of interest for Ny
corneal images to the local tangent plane and apply the rigid alignment. This creates sets
of low-resolution (LR) points I g;|i = 1...N; that represent non-uniform samples (observa-
tions) of an unknown high-resolution (HR) image, defined on a uniform grid in the plane.
The blur kernel matrices B; describe the downsampling of the vectorized high-resolution
image Igg for each vector Iy r; as in I r; = B;Igr.

We perform MAP (maximum a posteriori) based super-resolution (SR) using gradient
descent optimization to estimate the optimal HR image that minimizes the error between the
synthesized and observed LR images as in

argmlnE IHR Z || B,Iur — ILRI” —+ oc (IHR) 9)
Inr i=1
The matrix
1  lpniruri ||
; - 2
Binirixvur] | Bijk = ZNHR Bix ¢ 2 (10)

is a PSF matrix that maps the HR image to the i-th LR image, defined by a Gaussian blur
kernel, where pyr and prr are locations of HR and LR points, respectively.

Function ¢ describes the prior knowledge of the high-resolution image, where the positive
constant o represents the contribution of the prior to the overall cost. Several functions have
been proposed, and we use the norm of the HR image filtered by either a Laplacian of
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Gaussian filter (LoG), a bilateral filter residual (BL) [27] or a bilateral total variation filter
(BTV) [4, 21]. As for LoG, function c is defined as in

cLoG (Inr) = ||C IHR| ‘ Civir x> Cik = F (J k)

2
(HPHRk_pHRjH —2(71>Gl (J,k) 7w (n
): N, Gl (.]ak):e g

271:0—1 Z HR Gl (.]7 )

FioG (Js

where CT is a filter matrix containing the weights F (j, k) for mapping input pixels k to output
pixels j. Similar, the definition for BL, as in

epL (Inr) = || CMIir — IHRH2a

GGG (0 () (o)) (12)
FBL (.]7k) NHR : N G2 (Jak) =e 29 )
Z Gl(]a )G2(.]7k)
And for BTV, as in
cerv (Inr) = Z ym 13)
l=—rm=

where SLSym defines a matrix that shifts Iyr by / and m in x and y direction, respectively.

6 Experiments

We took data sets of 10 partial face images from different subjects at different locations with
a Nikon D60 (55 mm, 5.6) at a low resolution of 968 x 648 (Figure 6 (a),(b)). The average
diameter for the projected limbus is approximately 150 pixels (Figure 6 (c)). We further took
data sets for a spherical mirror with a radius of 7.9 mm that is similar in size to the corneal
sphere, where we estimate the position of the mirror from its occluding contour [31].

Figure 6 shows the results. HR image size is set to 125 x 125 pixels, corresponding to a
viewing angle of about 35 deg. The HR area contains approximately 1300 back-projected LR
points from each corneal image. Row (e) shows natural neighbor interpolation results (from
the points of all 10 registered images) that are used to initialize the previously described SR
approaches, including ML (maximum likelihood) (row (g)) and MAP (rows (h)-(j)). From
the SR results, we confirm that the MAP approaches (in particular BL. and BTV) perform
better and produce scene images with a quality high enough to recognize small characters,
human faces and fine structures, that cannot be restored by natural neighbor interpolation or
blind deconvolution (rows (e),(f)). On the other hand, the ML results exhibit high-frequency
artifacts, most likely caused by slight intensity differences in the LR images, as the wave
patterns occur in the direction of the aligned LR images. Nevertheless, the scene priors in
the MAP approaches can successfully eliminate these artifacts.

We further confirm that the described approach also works for a spherical mirror. Fig-
ure 7 shows a single image and the corresponding environment map, revealing details from
very compressed regions. Figure 6, right column, shows high quality scene images recovered
from mirror images. The results suggest the applicability of the approach with other non-
central catadioptric systems such as specular and liquid surfaces in everyday environments.
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Figure 6: SR result for different scenes (from datasets of 10 eye/mirror images). (a) Scene
images taken from the same position as the eyes, using a fisheye lens. (b) Single original
image. (c) Cropped eye region. (d)-(g) Local plane projection of recovered environment
map at region of interest: (d) Single LR image, natural neighbor interpolated. (¢) Combined
aligned LR images, natural neighbor interpolated. (f) Blind deconvolution of (e). (g)-(j) SR
result: (g) ML, before convergence. (h) MAP using LoG, (i) BL and (j) BTV prior, after
convergence. (k) Cropped pictures of the region of interest from scene images in (a). (right
column) Result from a spherical mirror at the size of the human cornea.



10 NITSCHKE, NAKAZAWA: SUPER-RESOLUTION FROM CORNEAL IMAGES

(a) (d) (e)

Figure 7: Environment map from a spherical mirror (with radius 7.9 mm), captured us-
ing 3872 x 2592 resolution (with a projected mirror diameter of approximately 850 pixels).
(a) HR image of the mirror. (b) A close up on the bottom right suggests a sitting person.
(c) The environment map clearly reveals the person, shown in a fisheye image (d). (e) It is
very challenging to identify the content at the top left of the mirror. (f) Interestingly, the
environment map reveals the silhouette of a person and details of the room.

In these experiments, we experimentally find PSF parameters around ¢ = 2.5 ~ 3.0. The
projection to the local tangent plane may cause non-uniform (per pixel varying) blur effects,
however, the current approach using a uniform PSF seems to work due to the locality of the
projection. While each corneal image shows several contamination with iris textures, the SR
process eliminates most of these as they follow a different reflection model than the scene
reflections and are, thus, not correctly aligned and reconstructed. Nevertheless, quality may
be further increased by performing iris texture separation [30].

7 Conclusion

This paper proposed a novel super-resolution technique for corneal reflection images that
also works with other non-central catadioptric systems, e.g., involving spherical mirrors.
Through experimental results of indoor and outdoor scenes, we confirmed the effectiveness
of the approach for recovering high-resolution textures in the surrounding scene. Since this
solves the quality degradation problem in corneal imaging techniques, we believe our con-
tribution can become a foundation for future applications in this research category.

Acknowledgement. This work was supported by the JST PRESTO program.
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