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Abstract

This paper presents a multi-output regression model for crowd counting in public
scenes. Existing counting by regression methods either learn a single model for global
counting, or train a large number of separate regressors for localised density estima-
tion. In contrast, our single regression model based approach is able to estimate people
count in spatially localised regions and is more scalable without the need for training
a large number of regressors proportional to the number of local regions. In particular,
the proposed model automatically learns the functional mapping between interdependent
low-level features and multi-dimensional structured outputs. The model is able to dis-
cover the inherent importance of different features for people counting at different spatial
locations. Extensive evaluations on an existing crowd analysis benchmark dataset and a
new more challenging dataset demonstrate the effectiveness of our approach.

1 Introduction
Crowd counting in public places has a wide spectrum of applications especially in crowd
control, public space design, and pedestrian behaviour profiling. In some applications, e.g.
crowd counting on a train platform, estimating a global count for the whole scene is suffi-
cient. For more complex scenarios, it is necessary to estimate the counts at different spatial
locations as well. For instance, for crowd counting in a shopping mall, one needs to know not
only how many people in total are in the scene, but also where they are distributed, i.e. which
shop is more popular.

Existing people counting techniques fall into three categories: counting by detection,
counting by clustering, and counting by regression. In counting by detection [8, 16, 24],
people count is estimated through detecting instances of people. Typically, the detection
process is time-consuming since it involves exhaustive scanning of image space using a pre-
trained detector with different scales. In counting by clustering [4, 20], a crowd is assumed
to be composed of individual entities, each of which has unique yet coherent motion patterns
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Figure 1: A flow chart illustrating the processing pipeline of global and local counting by
regression methods, and our multi-output model.

that can be clustered to approximate the number of people. Such a motion clustering based
method only works well with sufficiently high video frame rate so motion information can
be extracted reliably. The counting by detection and by clustering approaches either rely
on explicit object segmentation or feature point tracking. They are not suitable for crowded
scenes with cluttered background and frequent inter-object occlusion. In contrast, a counting
by regression model aims to learn a direct mapping between low-level features and people
count without segregation or tracking of individuals. This approach is more suitable for
crowded environments and is computationally more efficient.

Existing counting by regression methods can be categorised into either global approaches
or local approaches (see Figure 1). Global approaches [5, 7, 14, 18, 21] learn a single
regression function between image features extracted globally from the entire image space
and the total people count in that image. Since spatial information is lost when computing
global features, such a model assumes implicitly that a feature should be weighted the same
regardless where in the scene it is extracted. However, this assumption is largely invalid
in real-world scenarios. In particular, crowd structures1 can vary spatially due to density,
scene layout, and self-organisation of crowd induced by elementary individual interactions,
boundary conditions, and regulations [11]. Thus, different features can be more reliable and
relevant for crowd counting at different spatial locations. Furthermore, a global regression
model is unable to provide information about spatially local crowd count information, which
is desired in some applications.

To overcome these limitations of a global approach, local models [17, 23] aim to relax
the global assumption to certain extent by dividing the image space into cell regions, each of
which modelled by a separate regression function. The regions can be cells having regular
size, or different resolutions determined by the scene perspective to compensate for camera
geometric distortions [17]. Local counts can be estimated in each region and a global count
can then be obtained by summing up the cell-level counts. In an extreme case, Lempitsky et
al. [15] go one step further to model the crowd density at each pixel, casting the problem as
that of estimating an image density whose integral over any image region gives the count of
objects within that region. In general, unlike global approaches [5, 7, 14, 18], local models
aim to weigh features differently by local crowd structures in order to facilitate localised
crowd counting. However, existing local methods suffer a scalability issue due to the need to
learn multiple regression models, the number of which can become very large. In addition,
an inherent drawback of existing local models is that no information is shared across spa-
tially localised regions in order to provide a more context-aware feature selection for more
accurate crowd counting. In many real-world cases, low-level imagery features can be highly
ambiguous due to cluttered background and severe inter-object occlusions. Therefore, har-

1Systematic granular motion of crowd resembling the flow of gas, fluid, and granular media.
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nessing common properties and features among different local spatial regions should benefit
the estimation of crowd density.

We consider that localised feature importance mining and information sharing among
regions are two key factors for accurate and robust crowd counting, which are missing in
all existing techniques. To this end, we propose a single multi-output model for joint lo-
calised crowd counting based on ridge regression [22], which takes inter-dependent local
features from local spatial regions as input and people count from individual regions as
multi-dimensional structured output (see Figure 1). Unlike global regression methods, our
model relaxes the one-to-one mapping assumption by learning spatially localised regression
functions jointly in a single model for all the individual cell regions in a scene, as such our
model can capture feature importance locally. Unlike existing approaches to building mul-
tiple local regression models, our single model is learned by joint optimisation to enforce
dependencies among cell regions. Therefore information from all local spatial regions can
be shared to achieve more reliable count prediction. We demonstrate the effectiveness of our
model on both an existing crowd analysis benchmark dataset and a new more challenging
shopping mall dataset. In summary, the main contributions and novelties of this study are
three-fold:

• This is the first study that achieves robust crowd counting by mining local feature im-
portance and sharing visual information among spatially localised regions in a scene.

• This is achieved by considering a single multi-output ridge regression model for lo-
calised crowd counting which has advantages over both existing global approaches in
providing local estimates and existing local approaches being more scalable.

• We introduce a new public scene dataset of over 60,000 pedestrian instances for crowd
analysis. To our best knowledge, it is the largest dataset to date with the most realistic
and challenging setting of a crowded scene in a public space.

2 Methodology
Figure 2 gives an overview of our framework: (Step-1) We first infer a perspective normal-
isation map using the method described in [6]. (Step-2) Given a set of training images, we
extract low-level imagery features, including local foreground, edges and texture features,
from each cell region. (Step-3) Local features from each cell are used to construct a local
intermediate feature vector before all local intermediate feature vectors are concatenated into
a single ordered (location-aware) feature vector. (Step-4) A multi-output regression model
based on multivariant ridge regression is trained using the single concatenated feature vector
and the vector, each element being actual count in each region, as a training pair. Given a new
test frame, features are extracted and mapped to the learned regression model for generating
a structured output that estimates the crowd count in each local region simultaneously.

Note that the training/testing procedure adopted in our framework is similar to that in a
global counting framework (see Figure 1), but with a different and new learning strategy to
enable spatially localised features weighting and inter-region feature sharing. This variation
is important to our approach. As in [15], our method requires dot annotations on each pedes-
trian so we can generate a training count for each cell region. This may appear a laborious
task but dotting/pointing is the natural way of how human numerate objects. In practice
dotted annotation is no harder than raw count as in the global counting methods [5]. All
the labelled data with ground truth is released publicly (http://www.eecs.qmul.ac.
uk/~ccloy/downloads_mall_dataset.html).
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Figure 2: A multi-output regression framework for localised crowd counting by feature min-
ing.

2.1 Feature Representation
Given a training video frame i, where i = 1,2 . . .N and N denotes the total number of training
frames, we first partition the frame into K cell regions (see Step-3 in Figure 2). We then
extract low-level imagery features z j

i from each cell region j and combine them into an
intermediate feature vector xi ∈ Rd . We also concatenate the localised labelled ground truth
u j

i from each cell region into a multi-dimensional output vector, yi ∈ Rm, i = 1,2 . . .N

xi = [z1
i ,z

2
i , . . . ,z

K−1
i ,zK

i ], yi = [u1
i ,u

2
i , . . . ,u

K−1
i ,uK

i ].

We train the proposed model using {(x,y)}i , i = 1,2 . . .N. In this study, we adopt three types
of features as in [6]:

• Segment-based features: foreground area, total number of pixels of the foreground
perimeter, perimeter-area ratio, and histogram of perimeter edge orientation;

• Structural-based features: total number of edge pixels, histogram of the edge orienta-
tion, and the Minkowski dimension [19];

• Local texture features: Gray Level Co-occurrence Matrix (GLCM) [10].

Note that all images are transformed to grayscale prior to feature extraction. In addition,
features are perspective normalised using the method described in [6] and scaled into [0,1].

2.2 Multi-Output Regression Model
For learning a multi-output regression model, we exploit the ridge regression function [1, 9].
In its conventionally form, a ridge regression function learns a single output mapping. In
our case, we adapt it to cope with a multi-outputs regression learning problem for simulta-
neous localised crowd counting in different spatial cell regions. The rational for exploiting
ridge regression is that the model offers superior robustness in coping with multicollinear-
ity problem2, due to its regularised least-square error minimisation, as opposed to ordinary

2Some low-level features may be highly co-linear, unstable estimate of parameters may occurs [2], leading to
very large magnitude in the parameters and therefore a clear danger of severe over-fitting.
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least-square in classic regression methods such as linear regression. Ridge regression has
been exploited elsewhere for face recognition [1]. This is the first attempt to exploit it for
crowd analysis.

Formally, given (xi, yi) as the observation and target vectors, multivariate ridge regression
can be presented as follows

min
1
2
‖W‖2

F +C
N

∑
i=1

‖yT
i −xT

i W−b‖2
F , (1)

where W ∈ Rd×K and b ∈ R1×K denote a weight matrix and a bias vector respectively. The
‖ · ‖F denotes the Frobenius-norm, and C is a parameter that controls the trade-off between
the penalty and the fit.

The weight matrix W plays an important role in capturing the local feature importance
and facilitating the sharing of features. In particular, for each localised cell, we formulate
our model to jointly weigh the features extracted from both the corresponding localised cell
and other cell regions in the image. According to the above Equation (1), for jth cell region
in the images, jth column of matrix W is employed to weigh the concatenated feature vector
xi for the count estimation in corresponding localised cell region, i.e. jth entry of yi. Con-
sidering the residual error of all cell regions being penalized jointly with Frobenius-norm
and feature vector xi consisting of feature from both jth cell region and other cell regions in
the image, such a regression model can benefit from local feature importance mining, and
more importantly, feature information sharing within the whole image space for the localised
crowd density estimation of a specific region.

Here we provide more details on the error minimisation. Specifically, the above Equation
(1) is transformed as follows

min M(θ) = tr(
1
2

θ
T Qθ +PT

θ), (2)

where positive semi-definite matrix Q and matrix P are given as

Q =
[

2C ∑
N
i=1 xixT

i + I 2C ∑
N
i=1 xi

2C ∑
N
i=1 xT

i 2CN

]
∈ R(d+1)×(d+1), P =

[
−2C ∑

N
i=1 xiyT

i
−2C ∑

N
i=1 yT

i

]
∈ R(d+1)×K ,

where θ = [W;b] ∈ R(d+1)×K represents the matrix to be optimized, I denotes the identity
matrix, and tr(·) denotes the trace of a matrix. Different from the standard ridge regression
with single output, the coefficient P and parameters θ to be optimized in Equation (2) are
matrices instead of vectors, which leads to the usage of the trace tr(·) for minimisation.
Similar to ridge regression, Equation (2) is solved using the Quadratic Programming, which
has a global optimal solution, if and only if

∂M(θ)
∂θ

= Qθ +P = 0,

and thus, the weights and bias of ridge regression are computed by

θ = −(QT Q)−1QT P.

An alternative to the multi-output ridge regression model is the structural Support Vec-
tor Machine [13], which has been applied to pose estimation [12] and object detection [3].
Multivariate ridge regression is adopted owing to its simplicity in implementation.
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3 Experiments
Data Nf R FPS D Tp
UCSD [6] 2000 238 × 158 10 11–46 49885
Mall 2000 320 × 240 <2 13–53 62325

Table 1: Dataset properties: N f = number of frames, R = Resolution, FPS = frame per
second, D = Density (minimum and maximum number of people in the ROI), and T p = total
number of pedestrian instances.

(a) the UCSD Dataset (b) the Mall Dataset

Figure 3: (a) the UCSD benchmark dataset and (b) the new Mall dataset.

Datasets – The effectiveness of the proposed method was evaluated on two datasets: the
UCSD benchmark dataset [5, 6], and a new Mall dataset we introduce here, which is released
with labelled ground truth (http://www.eecs.qmul.ac.uk/~ccloy/downloads_
mall_dataset.html). The details of the two datasets are given in Table 1, and the ex-
ample frames are shown in Figure 3. In contrast to the UCSD dataset, of which the video was
recorded from a campus scene using hand-held camera (Figure 3(a)), the new Mall dataset
was captured using a publicly accessible surveillance camera in a shopping mall with more
challenging lighting conditions and glass surface reflections. The Mall dataset also covers
more diverse crowd densities from sparse to crowded, as well as different activity patterns
(static and moving crowds) under larger range of illumination conditions at different time
of the day. In addition, in comparison to the UCSD dataset, the Mall dataset experiences
more severe perspective distortion, which causes larger changes in size and appearance of
objects at different depths of the scene, and has more frequent occlusion problem caused by
the scene objects, e.g.stall, indoor plants along the walking path.

Settings – For the UCSD dataset, we followed the same training and testing partition as
in [6], i.e.we employed Frames 601-1400 for training and the rest for testing. For the Mall
dataset, we used the first 800 frames for training and kept the remaining 1200 frames for
testing. Based on the resolution of the different datasets, we defined 6× 4-cells for the
UCSD dataset and 8×8-cells for the Mall dataset.

Evaluation Metrics – We employed three evaluation metrics, namely mean absolute error
(mae), εabs; mean squared error (mse), εsqr; and mean deviation error (mde), εdev.

εabs =
1
N

N

∑
i=1

|vi − v̂i|, εsqr =
1
N

N

∑
i=1

(vi − v̂i)2, and εdev =
1
N

N

∑
i=1

|vi − v̂i|
vi

,

where N is the total number of test frames, vi is the actual count in each cell region or the
whole image, and v̂i is the estimated count of ith frame.
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Method Features Level Learning Level UCSD [6] Mall
Global Local Global Local mae mse mde mae mse mde

RR [22] 4 – 4 – 2.25 7.82 0.1101 3.59 19.0 0.1109
GPR [6] 4 – 4 – 2.24 7.97 0.1126 3.72 20.1 0.1159
MLR [23] – 4 – 4 2.60 10.1 0.1249 3.90 23.9 0.1196
MORR – 4 4 – 2.29 8.08 0.1088 3.15 15.7 0.0986

Table 2: Performance comparison between different methods and our multi-output ridge
regression (MORR) model on global crowd counting.

Comparative Evaluation – We compared the following models

• Single global model with global feature (1) ridge regression (RR) [22], and (2) Gaus-
sian processes regression (GPR) with linear + RBF kernel as in [6]. These models
employ global features as their input and the crowd density of the whole image as
their output.

• Multiple localised regressors (MLR) [17]. The input and output for the model is the
feature within each cell and the people count in the corresponding cell respectively.
The ridge regression model is used to eliminate the effect of using different regression
models.

• The proposed multi-output ridge regression (MORR) model described in Sec. 2.2.

For all models free parameters were tuned using 4-fold cross-validation.
Comparison With Single Global Regression Models – The results of different models on
the two datasets are shown in Table 2. It can be observed the two global regression models,
RR and GPR, yielded very similar results on UCSD compared to our MORR model, but
much higher error rates on the more challenging Mall dataset, i.e., 16.03%, 24.52%, and
15.01% higher than our model in mae, mse, and mde on average. It is worth pointing out
that in contrast to the other two metrics the mde is more indicative as it takes the level of
crowdedness of ith frame into account.

Different performances on two datasets were due to the different characteristics of the
two scenes. In the shopping mall scene different local regions can have drastically different
lighting conditions (see Figure 3(b)). The different fixed structures in the scene (e.g. stalls
and plants in the middle) also introduced different characteristics of occlusion. In compar-
ison, in the UCSD campus scene, there was no occlusion caused by static objects and the
lighting condition across the scene were fairly even and stable during the entire recording
period.

The result thus suggests that mining features at different spatial location is more critical
for a complex scene where lighting conditions are not uniform and can change quickly, and
occlusion can occur both inter people and between people and static obstacles. It is also
worth pointing out that despite its simpler formulation, the single global ridge regression
model achieves comparable or better performance compared to the more complex Gaussian
Processes Regression model.
Evaluation of Local Feature Mining of Our Model – The advantage of our multi-output
framework for localised crowd counting is to mine local feature importance for supporting
crowd density estimation. As Figure 4 shows, at different depths in a scene, certain types
of features can play a more important role in estimating specific localised crowd density.
Specifically, the plots in Figure 4 shows that the edge orientation 60◦ (mainly corresponds
to shoulder edges) in the Away-from-Camera Cell 43 exhibited a higher importance as com-
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Cell 6 Cell 43 

Figure 4: Local feature mining from one Close-to-Camera Cell 6 and one Away-from-
Camera Cell 43 selected from the grid image in Figure 1. For each cell, we also show
an example of image patch and together with the extracted edge at specific orientation. The
horizontal axes of the two plots represent the features described in Section 2.1.

Cell 11 Cell 51 Cell 55 

Figure 5: Using the Mall dataset as a study case: the figures depict the weight contributions
of neighbouring cells to cells 11, 51, and 55, which are highlighted using black boxes (refer
Figure 1 for cell index). Red colour in the heat maps represents a higher weight contribution
i.e.more information sharing.

pared to other edge orientations; whilst the edge orientation 90◦ (mainly corresponds to the
torso edges) in the Close-to-Camera Cell 6 was automatically assigned a higher weight. To
provide a closer look on the different edge orientations at different cells, we depicted two
example image patches and the associated edges extracted from cells 6 and 43 at the bottom
of Figure 4. The results suggest that the weights learned using our model matched our intu-
ition, i.e.different features, e.g.shoulder and torso edges, would have different importance to
estimation at different depths of a scene.

Evaluation of Information Sharing Among Regions – To demonstrate that spatially lo-
calised regions in a scene can indeed share information with each other, we used the Mall
dataset as a study case and selected three cells to profile how other neighbouring cells con-
tributed to their count estimation. The degree of information sharing (or evidence support)
can be quantified by summing the absolute weights of a neighbouring cell that contribute to
the count of a cell that we are interested in. We repeated this step for all neighbouring cells
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in the image space. The weight contribution/information sharing can be transformed into a
heat map as shown in Figure 5. Evidently, the closer the neighbouring cells to the selected
cell region, the more information were shared. This observation suggests that our model
is capable of seeking evidence support from other cell regions to achieve a more accurate
counting estimate.
Comparison With Multiple Localised Regression Model – As shown in Table 2, our
multi-output regression model outperformed the multiple local regression model (MLR).
It is interesting to note that the performance of the MLR is even worse than the two global
regression models, although it was motivated to overcome the limitations of global regres-
sion models [23]. Since the MLR model also measures the importance of different features
in different local regions as our model, this result highlights the importance of exploiting
the correlation between features across regions and sharing information across regions to
achieve more robust crowd counting. Without this information sharing, achieved by the mul-
tiple structure output regression model formulated in this paper, the local measures are too
noisy and brittle to be relied upon in isolation for estimating density. Importantly, our single
model based regression approach is more computationally scalable compared to the MLR
model, e.g. compared to MLR, MORR is 3-5 times faster in both training and testing. More
details about training and testing time for MLR and MORR are given in Table 3.
Analysis of Localised Counting Accuracy – To demonstrate the effectiveness of the pro-
posed MORR in localised counting, we selected two busy regions (right in front of two
shops) in the Mall dataset and compared the performance of MORR against MLR. The se-
lected regions are depicted in a figure together with the results on localised crowd counting in
Table 3. As compared to MLR, our MORR achieved more accurate localised counting, and
yet faster training and testing time. The results again suggest the importance of information
sharing among regions.

 	
 Region 1(R1)	
  	
 Scalability (seconds)	

 	
 mae	
 mse	
 mde	
  	
 Time-tr	
 Time-te	

MLR	
 0.82	
 1.45	
 0.3611	
 MLR	
 17.274	
 0.1028	

MORR	
 0.76	
 1.22	
 0.3317	
 MORR	
 14.848	
 0.0196	


 	
 Region 2 (R2)	

 	
 mae	
 mse	
 mde	

MLR	
 0.71	
 1.24	
 0.3317	

MORR	
 0.67	
 1.12	
 0.3061	


Table 3: Localised counting performance on two busy localised regions in the Mall dataset.
Region 1 consists of Cells 11, 12, 19, and 20, while Region 2 includes Cells 43, 44, 51, and
52. Time-tr and Time-te denote the training time and testing time respectively.

4 Conclusion
We presented a single multi-output regression model capable of spatially localised crowd
counting. Instead of building multiple localised regressors as adopted by existing techniques,
our approach utilises a single joint regressor taking concatenated multiple localised imagery
features as input for learning spatially localised crowd counts as multi-outputs. Our model
outperforms multiple localised regressors on a challenging shopping mall dataset owing to
its inbuilt ability for feature mining according to changing crowd conditions presented in dif-
ferent local spatial cell regions in the scene. On the other hand, it also compares favourably
against existing single global regressor based crowd counting models. Extensive and com-
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parative experimental results demonstrate the effectiveness of our method. Future work will
focus on improving the performance of crowd density estimation by considering dynamic
and temporal segmentation of crowd structure. This will facilitate the relaxation of any fixed
size local cell region definition and permit learning more accurate crowd sensitive count-
ing models reflecting dynamically the changing crowd structures in feature selection and
representation.
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