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Abstract

Chamfer matching is an effective and widely used technique for detecting objects or
parts thereof by their shape. However, it treats objects as being a mere sum of the dis-
tance transformation of all their contour pixels, thus leading to spurious matches. We take
account of the fact that boundary pixels are not all equally important by applying a dis-
criminative approach to chamfer distance computation, thereby increasing its robustness.
While this is improving the behavior in the foreground, chamfer matching is still prone
to accidental responses in spurious background clutter. To estimate the accidentalness of
a match, a small dictionary of simple background contours is utilized. These background
elements are trained to focus at locations where, relative to the foreground, typically
accidental matches occur. Finally, a max-margin classifier is employed to learn the co-
placement of all background contours and the foreground template. Our approach is eas-
ily integrated into an off-the-shelf directional chamfer matching approach and it shows
significant improvements over state-of-the-art chamfer matching on standard benchmark
datasets.

1 Introduction

Chamfer matching is a well established and widely used technique for registration and detec-
tion of whole objects and contour segments. Due to its simplicity and efficiency, numerous
application areas have benefited from chamfer matching. However, a serious limitation is
its susceptibility to background clutter. Although the inclusion of orientation information
[14, 19] has improved the specificity, performance is still seriously affected by clutter. The
primary reason for this is that the presence of individual model points in a query image is
measured independently. A match with the object model is then represented by the sum of
all the individual model point distance transformations. Consequently, i) all object pixels are
treated as being independent and equally relevant, and ii) the model contour (the foreground)
is prone to accidental matches with background clutter. As demonstrated by Biederman [5],
Attneave [2], and various experiments on illusionary contours, object boundary pixels are
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not all equally important due to their statistical interdependence. Moreover, in dense back-
ground clutter the points on the model have a high likelihood to find good spurious matches
[2, 5]. However, any arbitrary model would match to such a cluttered region, which conse-
quently gives rise to matches with high accidentalness. Chamfer matching only matches the
template contour and thus fails to discount the matching score by the accidentalness, i.e., the
likelihood that this is a spurious match. To improve the robustness of model matching, we
learn the co-occurrence of model points (or rather their matches). To reduce the accidental-
ness of chamfer matching, we learn a flexible co-placement of generic background contours.
Both these contributions are combined into a single discriminative learning algorithm. Our
approach is built upon the publicly available, state-of-the-art directional chamfer matching
approach [14] and we evaluate the proposed method on standard benchmark datasets for
chamfer matching.

2 Related Work

Approaches for object recognition can be divided into voting based approaches, e.g. [11,
17, 18, 21] and sliding window based approaches. In our work we focus on sliding window
methods based on Chamfer matching which has been used in a large number of applications
in computer vision. It was first introduced by Barrow et al. [3] to match two sets of contour
fragments. Since that time until today chamfer matching is a widely applied and successful
technique detecting complete objects or their parts. In [6] hierarchical chamfer matching
was suggested where edge points are matched in a coarse-to-fine-manner. Later, chamfer
matching was used to build powerful detectors as suggested in [10, 12, 13]. Leibe et al. [12]
combine local features with global shape cues obtained from chamfer matching to verify and
refine hypotheses. In [10] Gavrila and Munder have applied, chamfer matching for real-time
pedestrian detection and tracking. Lin et al. [13] have proposed a hierarchical part-template
tree that matches part templates using shape information based on chamfer matching scores.

In [20] Thayananthan et al. have compared shape context [4] and chamfer matching of
templates for object detection in cluttered images. They report that chamfer matching is
more robust in clutter than shape context. Nevertheless, false positives in cluttered back-
ground were found to be the major downside of chamfer matching. More recent research has
made attempts to address this problem. Shotton et al. [19] suggested an improved match-
ing scheme called oriented chamfer matching (OCM) that takes into account the orientation
mismatch between pixels. In [14] an alternative approach for incorporating edge orientation
has been proposed which solves the matching problem in an augmented space. It was shown
that the suggested directional chamfer matching (DCM) achieves a superior performance
compared to oriented chamfer matching. Another improvement was suggested in [15] where
manually specified tuples of contour fragments have been used as normalizers for oriented
chamfer matching.

[14, 19] focus on adding orientation information to improve the matching quality of the
foreground template. In both approaches an object hypothesis is represented as the sum of its
distance transformation costs under additional consideration of pixel orientations. However,
an object is more than a mere sum of the deformation of individual pixels, i.e. consider-
ing for instance the fact that not all boundary pixels are equally important. We improve
the matching performance of directional chamfer matching by learning co-occurrences of
boundary pixels and background contours to represent the object and distinguish it from
clutter. In [15] a coarse attempt was made to model background by normalizing template
matches with manually combined normalizer contours with fixed location at the center of
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Figure 1: Pixel weights learned in a discriminative max-margin framework for various shape
templates are visualized here. The pixels are weighted realtive to the template and therefore
are not comparable among different object classes. Red indicates high and blue low weight.

the object. However, to sufficiently model complex background it is important to combine
simple contours in a more robust way and with flexible placement going beyond the manual
combinations of normalizers. Motivated by that, we measure the accidentalness of a match,
by learning the co-placement of background contours dependent on the foreground, which
enables our approach to handle complex background patterns. Our final detection system
improves the matching performance of the foreground template while suppressing difficult
spurious matches in cluttered background by the proposed background regularization.

3 Max-Margin Chamfer Regularization

We base our study in this paper on the recently proposed improved fast directional cham-
fer approach [14]. The method by Liu et al. [14] achieves state-of-the-art performance in
chamfer-based matching and it is publicly available, thus enabling our extension to be easily
applicable. Let us now briefly review the fast directional chamfer matching [14] and intro-
duce the required notation. Let 7 = {t;} and Q = {q;} be the sets of template and query
edge map respectively. Let ¢(t;) denote the edge orientation of the edge point t;.

For a given location x of the template in the query image, directional chamfer matching
aims to find the best q; € O for each t; € T by minimizing the cost |(t; +x) —q;| + A|d(t; +
x) — ¢(q;)|- A denotes the weighting factor between location and orientation terms. Thus
the directional chamfer distance for placing the template at location x is defined as

eyt () mzmm — |+ 2[0(t+%) — 9(q,)] (1)

tETJ

where A denotes the weighting factor between location and orientation terms.

3.1 Learning the Relevance of Model Points
Not all the pixels on the shape template are equally important for detecting objects. Con-
sider for instance the famous Kanizsa triangle. Provided only contour fragments around
the corners, the whole triangle can be easily recognized. Similarly, Biederman [5] presents
perceptual experiments with degraded contours that demonstrate the varying importance of
different points on object contours. Another example is Attneave’s cat [2], where for in-
stance, points of high curvature are proposed as the most useful features for recognition.
However, we do want to automatically learn, which parts of the model are important, rather
than manually encoding a set of rules that define the importance of contour points.

In chamfer matching, matching costs for a template are obtained by summing over all the
template pixels in the distance transform of the query image as in (1). Thus, all the pixels are
implicitly considered to be equally important when computing the matching costs. To take
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into account the fact that not all pixels are equally important, we learn discriminative weights

for the co-occurrence of individual template points, i.e., of their matching costs pET"Q> (x),

Py (x) = min |t %) — ;| +A16 (t+x) 0 (q;)] @)
J

Adjacent template pixels are statistically dependent and, thus, we do average (2) over the
direct neighbors of pixel i. The resulting p; are then used to learn the importance of con-
tour pixels. The discriminative learning algorithm that discovers the weights for the co-
occurrences of pixels is described in Sect. 3.3. For visualization purpose, we learned the
importance of each pixel using a linear SVM and display the resulting weights for various
shape templates in Fig. 1.

3.2 Using Background Contours to Model Accidentalness

Chamfer matching is notoriously prone to spurious matches in background clutter. Although
adding orientation information [14, 19] and learning the relevance of foreground pixels in-
crease the specificity of the approach, they fail to eliminate false positives in intense clut-
ter (for an example see Fig. 5). Consequently we need to measure the accidentalness of a
match. We use a codebook of simple, generic contour segments, which obviously feature
a low specificity and high accidentalness. To obtain the set of simple contour segments we
collect differently oriented straight and curved lines (see Fig. 2 a)). These simple contours
will be called background contours T;, in the following. As a negative side effect these
background contours will, however, also respond to the foreground object. To make up for
the lack of specificity of individual contours we learn discriminative co-occurrence patterns
of all of these background contours. These co-occurrence patterns identify matches to clut-
ter and distinguish them from actual foreground matches. In contrast to [15], who manually
combine tuples of normalizers consisting of one or two contours to form hand designed com-
plex background templates, we propose to automatically learn flexible arrangements of all
the background contours to improve detection accuracy.

False positives occurring in background clutter are caused by the edges in the query im-
age at the locations where the foreground contour is placed. Consider a U-shaped template
being matched to a query image. Clutter from the query image that is situated within the U
does not interfere with the template. Only clutter that is close to the contour of the U will
have an impact. Therefore, we need to check for spurious background contours in the neigh-
borhood of model contours, but not elsewhere. In contrast to this, [15] place background
contours at a fixed single location, i.e., at the center of the model contour, thereby not mea-
suring the susceptibility of the model contour to clutter. Rather than measuring the amount
of clutter on the template contour where it actually matters, they check for clutter simply at

the center of the object. To measure where clutter typically interferes with the model con-
L . Ty, T

tour we compute the directional chamfer matching score dl()cbﬁ,', ) between each background

contour and the object template. We consider placements of the background contour with

better (lower) chamfer matching score to be more important since they occur on or close to

the model contour. In order to weight these matching locations higher we create a mask
MO (x) = 1 - d P D () 3)

from the directional chamfer matching scores. Each combination of a foreground template
and a background contour results in a different mask. Fig. 2 shows examples of these masks
for different background contours. One can see that high weight is assigned where the back-
ground contour matches well to the foreground contour and low weight otherwise. Therefore
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Figure 2: A set of simple background histograms from fast directional chamfer match-
contours 7T}, is shown in a). These back- ing score maps, see (4). In the score map on the
ground contours were placed relative to left, red indicates high matching score and blue
the cow shape mask shown in Fig. 1 to indicates low matching score of the background
create masks described in (3). b)-d) show template in the query image. For a bounding
the resultant masks. b) shows the mask box region B(X) centered at X, each directional

for the vertical line, c) shows the mask  chamfer matching score dl()%ﬁ,}g) (x) is assigned
for the horizontal line and d) shows the

' to its corresponding histogram bin range My
mask for arc 3 in the second row of panel and casts a vote with weight M Tog.T) (x) (see (3)
a). Red indicates high weight and blue 4 Fig. 2) to this bin.

indicates low weight.

Thg
FDCM distances déchi,lQ) background histogram h(T”-"‘Q)

matching
. strength
K

matches of background contours inside the object are less important than those on the object
boundary.

To describe the background matching costs for a hypothesis in a robust way we are

building weighted histograms over chamfer matching scores d IgTCbi;Q) obtained from matching

a background contour 7}, with the query image Q. Let B(X) be the bounding box region
with center X for a specific placement of the foreground template 7 in the query image Q

(see Fig. 3). For each foreground hypothesis we build weighted histograms hT5eQ) over

the directional chamfer matching scores dl()g%Q) in the corresponding bounding box region.

The weights introduced in (3) are used to weight the histogram votes. Therefore chamfer

matching scores dl()gﬁ,lg) are weighted according to their position relative to the foreground

template. Each histogram consists of K bins where M; is the range of the kth bin and

k=1,...,K. We define a histogram bin h,ETbg’Q) as
9= Y MUsD(x), “)
XEB(X)

(Tpg-Q)
dDCl); (x)eMy

for each background contour 7, on a certain position of the foreground template 7" in the
query image Q (see Fig. 3).

3.3 Learning Chamfer Regularization
From above we know that we need to model the co-occurrence of all template points. More-
over, a codebook of simple generic contours needs to be matched close to the template con-
tour where accidental matches typically occur. We combine these challenges in one discrim-
inative approach.

The aim is to regularize directional chamfer matching by learning the characteristic co-
occurrence of template pixels and the joint placement of background contours. As training
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(T,0)
i

matching score of shape template as shown in the example here. The original image, the
result obtained from directional chamfer matching and the result obtained from foreground
reweighing are shown in panels a,b and c respectively. The groundtruth bounding box is

shown in green and the top scoring object hypotheses are shown in red.

Figure 4: Learning discriminative weights for the co-occurrences of p (x) improves the

data this learning algorithm utilizes the object hypotheses obtained from running the direc-
tional chamfer matching code [14] on the training images. A hypothesis j with an overlap
greater than 80% with the groundtruth is labeled as positive y; = 1. This ensures that only
good hypotheses which are matching to the actual object contours are selected as positive
examples. For negative examples, we want to have the hypotheses where most of the object
template matches in the background. Therefore, hypotheses with an overlap smaller than
40% with the groundtruth are labeled as negative y; = —1. The learning algorithm is found
to be robust to small variations in the cutoff values of 80% and 40% overlap criterion with the
groundtruth. For each object hypothesis we build a feature vector fj = [pi ... pr hi ... hg]
consisting of the average pixel cost p; and the corresponding background histograms h;,
where L is the number of template edge pixels and G is the number of background contours.

Let IC(f;, fj) be a kernel that represents the similarity between feature vectors f;, f;.
Subsequently, we use the radial basis kernel K(f;, f;) = exp (= 7|/ f; — £;||*). It is common
practice in the field of kernel machines, to interpret the kernel /C(f;, f;) as a dot product
of transformed features y(f;), w(fj). Here y represents the mapping of the feature vec-
tor into a higher dimensional space. Due to the seminal ‘kernel trick’ [7] it is sufficient to
define the kernel /C without explicitly representing the mapping y. We then seek weights
w to be applied on y(f;) so that the margin between positive and negative hypotheses in
the transformed space is maximized. To model the joint co-occurrences of foreground and
background contours we need to utilize a non-linear kernel that captures the relationship be-
tween foreground and background pairs, triples, quadruples and so on. From the polynomial
kernel KC(f;, fj) = < fisf j>2 of degree 2 one can easily determine, that the mapping function
v comprises all possible second order terms. It is straightforward, that a polynomial kernel
of degree d comprises all possible combinations between feature dimensions up to degree
d. Since the Taylor expansion of the RBF kernel is a infinite set of features corresponding
to polynomial terms it comprises an infinite amount of feature combinations. We need to
optimize the following max-margin classification problem to learn the weights w.

I .
“wl2+c Y & 5
min Sl j;é/ Q)

subject to : yj(le//(fj)+b)21—§j AN E>0, V)

where N is the number of training samples, b is the offset, C is the penalty and &; are slack
variables allowing for margin violations. Commonly (5) is converted into its dual form and
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] | Pedestrians | Cows | Giraffes | Mugs |

DCM 3.0 88.1 27.0 10.1
Foreground Regularization 6.8 89.2 36.3 27.3
Regularized Chamfer Matching 11.2 91.9 43.0 27.3

Table 1: Comparison of average precision (in %) for three datasets namely, TUD Pedestri-
ans, Cows and the ETHZ giraffes and mugs. We compare the basis of our approach (DCM)
with the extension from Sec. 3.1 and our final learning of regularized chamfer matching.

solved for the dual SVM parameters, the support vectors S;, their coefficients ¢; and the
offset b. After training the combined model of foreground relevance and background acci-
dentalness from (5) let us now utilize this model to improve upon the directional chamfer
matching cost function (1). This improved, regularized chamfer distance dlgg)‘,{(x) again
measures the distortion cost of object hypotheses f;. f; denotes the feature vector of j-th
object hypothesis obtained by the placement of object template T at location x in the query
image Q. Since a non-linear radial basis kernel is employed, the regularized chamfer dis-
tance is obtained using the dual SVM parameters, obtained by solving the SVM optimization
problem from (5) in its dual form,

d,%%(x) =1- (Zailc(fj,sl') +b>. (6)

As in standard chamfer matching, candidate hypotheses are obtained by applying non-maximum
suppression onto the regularized distances drpcys-

4 Experimental Evaluations

We now evaluate the discriminative chamfer regularization on several datasets which are
commonly used for evaluation of chamfer matching. In particular, we compare with the di-
rectional chamfer matching (DCM) [14], which our model is built upon and with normalized
oriented chamfer matching (NOCM) [15], which is a state-of-the-art extension to chamfer
matching.

To obtain the edge maps used in the following we are utilizing the probabilistic boundary
detector suggested in [16]. Furthermore we are using the support vector machine implemen-
tation of [8]. To perform directional chamfer matching, we are using the publicly available
code of [14]. We use the same parameters from the downloaded version of the code for all
the datasets. We used the same set of background shapes, as shown in Fig. 2, for all the
datasets. The sizes of the background contours were adjusted relative to the size of fore-
ground templates for each dataset. To measure the performance of our detection system we
are using standard PASCAL overlap criterion.

In the first part of our experimental evaluation we are analyzing the individual contri-
butions of the suggested foreground and background regularization and compare their per-
formance to that of DCM on which we build our approach. In the second part we compare
the performance of our combined object detector to state-of-the-art chamfer matching ap-
proaches NOCM and HDT.

4.1 Evaluating Foreground and Background Regularization

Subsequently, we evaluate the gain achieved by the proposed foreground and background
regularization on context of category-level object detection in three standard datasets and we
compare our results with the DCM baseline on which we build our approach.
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Figure 5: Learning co-occurrences of foreground shape template alone is not enough as
shown in the example here. The original image, the result obtained from foreground
reweighting and the result obtained from the combined foreground and background regu-
larization are shown in panels a,b and c respectively. The spurious hypothesis resulting in
panel b is suppressed by means of the combined regularization learned in (5)

The first dataset we are using is the TUD pedestrian dataset. As suggested in [15] we are
using the larger training set, consisting of 400 side-view pedestrians, to build our detector
and test our approach on the provided testset consisting of 250 test images. We use five
masks of the training images as shape templates. The second dataset is the Cow dataset from
the PASCAL Object Recognition Database Collection [11] which consists of 111 images in
which cows appear with quite different articulation. We are following the protocol used in
[15] to divide the dataset into training and testing sets. We use five masks of the training
images as our shape templates. Finally, we evaluate on two challenging categories from the
ETHZ shape dataset [9], giraffes and mugs. One hand-drawn template for each category is
provided along with the dataset.

Our approach is efficient, as looking up the background contour costs form the integral
image has negligible running time compared to computing the distance transformation of
directional chamfer matching [14]. In Tab. 1 we are presenting our results for the DCM
baseline, the performance of our foreground regularization method and of our combined
detector. These experiments show that foreground regularization alone is already improving
the average precision on all of these object categories. Additionally applying the background
regularization is suppressing even more false positives in cluttered background.

For the TUD Pedestrian dataset the images in the testing set are given at a very high
resolution which yields very low average precision for the directional chamfer matching
which is around 3%. The low baseline can be attributed to the high resolution of the test
images, since it is known that chamfer matching is sensitive to all the fine details in the edge
map. Our suggested foreground regularization more than doubled the average precision to
the baseline. Adding the background regularization brought a further gain of 4.5%.

For the Cow dataset directional chamfer matching yields very good performance around 88%
average precision. Nevertheless, our combined detector could still improve performance
about 4% by exploiting the advantages of foreground and background regularization. In Fig.
4 one can see how foreground reweighting is improving the alignment with the groundtruth
and that it also suppresses false positives.

The background normalization becomes particularly useful in cases of challenging objects
appearing in images with a lot of clutter like the ETHZ giraffes. Performance improves by
16% in terms of average precision using our combined detector. 7% out of this gain could
be attributed to background regularization. The example in Fig. 5 shows that foreground
regularization is not always able to suppress false positives in cluttered background and how
background regularization can handle such cases.

For rather simple objects like ETHZ mugs we observed that explaining the foreground more
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Wl , it - A A Figure 6: The top row shows de-

tection results using the directional
| chamfer matching method. Bottom
row shows the improved detections
applying our regularized chamfer
matching. The groundtruth bound-
ing box is shown in green and the top
= scoring object hypotheses are shown
in red.

‘ Cows ‘ Peds ‘ Table 2: Comparison in terms of
detection rate (in %) at 10% pre-

Chamfer Matching 739 | 44 ..
cision on the Cow dataset and the
NOCM [15] 91.0 | 70.0 . .
TUD Pedestrian dataset with stan-
HDT [22] 88.2 _ dard chamfer matching, NOCM and
Regularized Chamfer Matching | 98.3 | 80.0 HDT ’

accurately is more important than suppressing false detections in cluttered background. We
observed 17.3% improvement in average precision by learning the co-occurrence of template
pixels while our combined detector is giving results in the same range.

All in all our combined detector using foreground and background regularization is
achieving significant gain on all of the four categories compared to directional chamfer
matching. Additional detection results comparing the regularized chamfer matching to di-
rectional chamfer matching are provided in Fig. 6.

4.2 Comparison with Chamfer Matching Methods

Furthermore we are comparing our method with two other state-of-the-art approaches on
three datasets. The first method we are comparing our approach to is the normalized oriented
chamfer matching by Ma et al. [15] (NOCD) since they also incorporate background into
chamfer matching. We also compare our approach with the work of Zhu et al. [22] who
utilize a novel probabilistic model called hierarchical deformable template model (HDT).
[22] use one example learning in their evaluation whereas we utilize 5 templates for the
TUD Cows and TUD Pedestrians.

[15] have reported results on two datasets: the TUD Pedestrian dataset [1] and the Cow
dataset [11]. [22] have evaluated their method on the Cow dataset. Both approaches are
reporting their results in terms of detection rate at 10% precision. In the previous section we
are reporting in terms of average precision, since it is taking into account the area under the
precision recall curve instead of just one point and therefore is a much more robust measure.
However, to compare ourselves to [15, 22], we are reporting results in terms of detection rate
at 10% precision.

Tab. 2 shows the results for the Cow dataset and the TUD Pedestrian dataset. We ob-
served that to make the DCM baseline comparable to the OCM baseline the edge maps in
the test images need to be downscaled. Hence, we report our final detection performance on
the downscaled version of the test images. The results indicate that chamfer regularization
is significantly improving performance on the Cow dataset compared to HDT and NOCM.
For TUD Pedestrians we gain 10% in detection rate compared to NOCM, when running
the directional chamfer matching on downscaled test images. All in all our results confirm
that the regularized chamfer matching method is significantly improving over state-of-the-art
chamfer matching techniques.
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5 Conclusion

In this paper we have addressed two issues that limit the performance of the established
and widely used chamfer matching technique, its susceptibility to clutter due to acciden-
tal matches and the fact that all model points are treated as being independent and equally
relevant. By learning the co-occurrence of model points we have modeled the varying rele-
vance of different foreground pixels and increased the specificity of the model. By allowing
a codebook of simple, generic contours to be flexibly placed along the model contour where
spurious matches are most likely, accidental matches can be discovered. Learning the joint
placement of all of these generic background contours does then suppress accidental matches
to clutter. Both extensions are integrated in a single discriminative learning approach and the
method is based upon a publicly available, state-of-the-art chamfer method thus demonstrat-
ing its simple and wide applicability. The approach has been shown to successfully improve
current chamfer matching approaches on standard datasets. '
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