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Chamfer matching is an effective and widely used technique for
detecting objects or parts thereof by their shape. However, a serious lim-
itation is its susceptibility to background clutter. The primary reason for
this is that the presence of individual model points in a query image is
measured independently. A match with the object model is then repre-
sented by the sum of all the individual model point distance transforma-
tions. Consequently, i) all object pixels are treated as being independent
and equally relevant, and ii) the model contour (the foreground) is prone
to accidental matches with background clutter.

As demonstrated by Attneave [1], and various experiments on illu-
sionary contours, object boundary pixels are not all equally important due
to their statistical interdependence. Moreover, in dense background clut-
ter the points on the model have a high likelihood to find good spurious
matches [1, 3]. However, any arbitrary model would match to such a
cluttered region, which consequently gives rise to matches with high ac-
cidentalness. Chamfer matching only matches the template contour and
thus fails to discount the matching score by the accidentalness, i.e., the
likelihood that this is a spurious match.

We take account of the fact that boundary pixels are not all equally im-
portant by applying a discriminative approach to chamfer distance com-
putation, thereby increasing its robustness. Let T = {ti} and Q = {q j}
be the sets of template and query edge map respectively. Let φ(ti) denote
the edge orientation of the edge point ti. For a given location x of the
template in the query image, directional chamfer matching [2] finds the
best q j ∈ Q for each ti ∈ T , thus resulting in a matching cost p(T,Q)

i (x).

p(T,Q)
i (x) = min

q j∈Q
|(ti +x)−q j|+λ |φ(ti +x)−φ(q j)| (1)

Adjacent template pixels are statistically dependent and, thus, we do
average (1) over the direct neighbors of pixel i. The resulting p̄i are then
used to learn the importance of contour pixels.

While learning the weights for individual pixels improves the robust-
ness of template matching, chamfer matching is still prone to accidental
responses in spurious background clutter. To estimate the accidentalness
of a match, a small dictionary of simple background contours Tbg is uti-
lized. Rather than placing background contours at a fixed single location,
i.e., at the center of the model contour as in [3], background elements are
trained to focus at locations where, relative to the foreground, typically
accidental matches occur.

Let d(T,Q)
DCM (x) denote the directional chamfer distance between Q and

T with a relative displacement x. To measure where clutter typically in-
terferes with the model contour we compute d(Tbg,T )

DCM between each back-
ground contour Tbg and the object template T . We consider placements of
the background contour with better (lower) chamfer matching score to be
more important since they occur on or close to the model contour. In order
to weight these matching locations higher we create a mask M(Tbg,T )(x)

M(Tbg,T )(x) = 1−d(Tbg,T )
DCM (x) (2)

To describe the background matching costs for a hypothesis in a ro-
bust way we build weighted histograms over chamfer matching scores
d(Tbg,Q)

DCM obtained from matching a background contour Tbg with the query
image Q. Let B(x̄) be the bounding box region with center x̄ for a specific
placement of the foreground template T in the query image Q. For each
foreground hypothesis we build weighted histograms h(Tbg,Q) over the di-
rectional chamfer matching scores d(Tbg,Q)

DCM in the corresponding bounding
box region. The weights introduced in (2) are used to weight the his-
togram votes. Therefore chamfer matching scores d(Tbg,Q)

DCM are weighted
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Figure 1: Comparison of a) reguarized chamfer matching with b) direc-
tional chamfer matching.

according to their position relative to the foreground template. Each his-
togram consists of K bins where Mk is the range of the kth bin and
k = 1, ...,K. A histogram bin h(Tbg,Q)

k is defined as

h(Tbg,Q)
k = ∑

x∈B(x̄)

d
(Tbg ,Q)

DCM (x)∈Mk

M(Tbg,T )(x), (3)

for each background contour Tbg on a certain position of the foreground
template T in the query image Q.

For each object hypothesis we build a feature vector fi = [p̄1 ... p̄L h1 ... hG]
consisting of the average pixel cost p̄i and the corresponding background
histograms hi, where L is the number of template edge pixels and G is the
number of background contours.

Finally, a max-margin classifier is employed to learn the co-placement
of all background contours and the foreground template. This classifier
yields a regularized distance function dRDCM

d(T,Q)
RDCM(x) = 1−

(
∑

i
αiK( f j,Si)+b

)
. (4)

K denotes the kernel used in the SVM. b denotes the offset. Si,αi
denotes the support vectors and their respective coefficients.

Our approach is easily integrated into an off-the-shelf directional cham-
fer matching approach and it shows significant improvements over state-
of-the-art chamfer matching on standard benchmark datasets. The quali-
tative and quantitative results are detailed in the paper.
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