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Abstract

The potential value of human action recognition has led to it becoming one of the
most active research subjects in computer vision. In this paper, we propose a novel
method to automatically generate low-level spatio-temporal descriptors showing good
performance, for high-level human-action recognition tasks. We address this as an op-
timization problem using genetic programming (GP), an evolutionary method, which
produces the descriptor by combining a set of primitive 3D operators. As far as we are
aware, this is the first report of using GP for evolving spatio-temporal descriptors for
action recognition. In our evolutionary architecture, the average cross-validation classi-
fication error calculated using the support-vector machine (SVM) classifier is used as the
GP fitness function. We run GP on a mixed dataset combining the KTH and the Weiz-
mann datasets to obtain a promising feature-descriptor solution for action recognition.
To demonstrate generalizability, the best descriptor generated so far by GP has also been
tested on the IXMAS dataset leading to better accuracies compared with some previous
hand-crafted descriptors.

1 Introduction

Recently, human-action recognition has attracted increasing attention for a wide range of
applications such as video search and retrieval, intelligent surveillance systems, and human-
computer interaction.

Generally, the basic approach to action recognition contains the following main stages:
(1) low-level feature extraction and representation; (2) high-level action classification. For
the low-level stage, we commonly apply various techniques such as: histogram of 3D ori-
ented gradients (3DHOG) [14], 3D scale invariant feature transforms (3DSIFT) [28], and
histogram of optical flow (HOF) [20] to represent actions by extracting the most salient
features (edges, corners, intensity and orientation information), the choice of which greatly
influences the performance of the high-level action classification. These traditional feature
representation methods, however, are usually only suitable in a given domain and often result
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in a poor performance on other applications. How to design a generalized methodology to
extract spatio-temporal features for any user-defined application remains a research issue.

As an alternative to hand-crafted solutions based on deep domain knowledge, genetic
programming (GP), a popular evolutionary method inspired by natural evolution, can be em-
ployed to automatically solve problems without prior knowledge of the solutions. In the
present setting, we wish to identify the descriptor (i.e. the sequence of primitive operations,
the composition and order of which are unknown) to maximize classification performance on
the human-action recognition task. This is an NP-hard search problem which evolutionary
methods may solve in a tractable amount of computer time compared to exhaustive enumer-
ative search. GP has been used to address a wide range of practical problems producing
human-competitive results and even patentable inventions. As a search framework, GP can
typically escape the local minima in the optimization landscape which may trap deterministic
search methods.

In this paper, we report what we believe to be the first application of genetic programming
(GP) for generating a novel spatio-temporal descriptor for action recognition. Given a group
of primitive 3D processing operators and a set of labelled training examples, GP evolves
(hopefully) better-performing individuals in the next generation. Eventually, a best-so-far
individual can be selected as the final solution. We successfully use GP to generate a new
and highly-performing spatio-temporal descriptor which has been tested on a mixed KTH-
Weizmann dataset, and the more challenging IXMAS dataset to demonstrate generalizability.
For comparison, we also show that the proposed method is superior to some previously-
published hand-crafted solutions.

The main contributions of this paper can be summarized as follows:

1. To the best of our knowledge, this is the first time that genetic programming (GP) has
been successfully applied to designing descriptors in human-action recognition.

2. The proposed methodology and the generated descriptor can also be used directly in
other applications.

The paper is organized as follows: In Section 2, some related work is described. The
detailed architecture of our method is presented in Section 3, and relevant experiments and
results are described in Section 4. In Section 5, we conclude this paper and outline possible
future work.

2 Related work

Recently, evolution-based methods simulate biological evolution to automatically generate
solutions for user-defined tasks. Bhanu et al. [1] have proposed an adaptive image segmen-
tation system based on a genetic algorithm (GA). In their method, the GA is an effective
way of searching the hyperspace of segmentation parameter combinations to determine the
set which maximizes a segmentation quality criterion. Evolutionary methods have been em-
ployed to solve a range of other problems [8, 11, 12, 17].

Other evolutionary approaches have been proposed, among them genetic programming
(GP) [15, 25]; GP has been widely utilized in the computer vision domain. Poli [24] has
applied GP to automatically select optimal filters for segmentation of the brain in medical
images. Following the same lines, Torres ef al. [30] used GP for finding a combination of
similarity functions for image retrieval. Davis et al. [3] have also employed GP for feature
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selection in multivariate data analysis, where GP can automatically select a subset of the most
discriminative features without any prior information. In addition, other researchers [6, 13,
36] have also successfully applied GP to classification tasks with improvements compared
with previous methods.

Recently, GP has been exploited to assemble low-level feature detectors for high-level
analysis, such as: object detection, 3D reconstruction, image tracking and matching. The
first work in this area employed GP to evolve an operator for detecting interest points [4].
Trujillo and Olague [31] have also used GP to generate feature extractors for computer vi-
sion applications. In addition, a GP-based detector was proposed by Howard et al. [7] for
detecting ship wakes in synthetic aperture radar (SAR) images. Inspired by the successful
applications mentioned above, in this paper we propose evolving a spatio-temporal descrip-
tor for human-action recognition using GP.

3 Methodology

To design a novel spatio-temporal descriptor for human action recognition using genetic
programming (GP), a group of primitive 3D operators is adopted in our architecture and as-
sembled by GP to construct a descriptor driven by maximizing its accuracy (fitness function)
evaluated over a training set. The outline of our method is illustrated in Fig. 1.

Input action b Eﬁtdr,?tl‘:’]) P Genetic Obtain best-so-far
sequences E:> ounding boxes [:> rogramming [> feature descriptor
and normalize processing

Figure 1: The main flowchart for our proposed method

3.1 Raw data pre-processing

We first coarsely extract from the original action sequences the 3D bounding boxes in which
the actions are performed. The obtained bounding boxes are then all normalized to the same
size of 100 x 100 x 70 by using bicubic interpolation. As a result, all the action sequences
are of equal sizes and all actions are approximately localized after pre-processing.

3.2 Genetic programming framework

Genetic programming (GP) [25] is one of a number of population-based evolutionary al-
gorithms inspired by natural evolution and is widely used in machine learning. It allows a
computer to automatically solve pre-defined tasks without requiring users to know or specify
the form or structure of the solution in advance. In GP, we randomly generate an initial pop-
ulation of operation sequences which are regarded as candidate solutions. This population is
then allowed to ‘evolve’ (by selection, crossover and mutation) through sexual reproduction
with pairs of parents being chosen stochastically but biased in their fitness on the task at
hand. In this way, the general fitness of the population tends to improve over time. Finally,
the best performing individual obtained is taken as the final solution. It should be noted that
evolutionary methods do not guarantee to find any mathematical optimum but, in practice,
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usually find a ‘good’ solution to an NP-hard problem in an acceptable amount of computer
time. The genetic programming algorithm is shown in Algorithm. 1.

Algorithm 1 Genetic Programming
Start
Initialization Randomly create an initial population of operation sequences from the
available primitives (terminal set & function set).
Repeat
(1) Evaluate the fitness of each individual.
(2) Choose individuals from the population with a particular probability biased in their
fitness.
(3) Create a new generation of individuals applying genetic operations.
If An acceptable solution is found or the maximum number of generations
(defined by user) exceeded.
Stop
Return The best solution is selected.
End

The pre-processed action sequences form the training set and each 100 x 100 x 70 block
is taken, in turn, as the input to a GP individual. Each GP candidate descriptor is formulated
as a tree structure, the output of which is still a 100 x 100 x 70 block. A representative GP
tree is illustrated in Fig. 2.

3.2.1 Function set

A key concept for GP is the function set (internal nodes of the tree) which is typically driven
by the nature of the problem domain. Commonly, the choice of functions is based on the
following principles:

1. The set must contain functions which can extract meaningful information.

2. To minimize the total runtime of the GP, all the operators in the function set need to
be relatively simple and efficient.

3. To ensure operator closure [25], we have only used functions which map one or two
100 x 100 x 70 3D blocks to a single 100 x 100 x 70 block. In this way, a GP tree can
be an unrestricted composition of function nodes but still always produce semantically
legal tree.

Note that in GP, not all functions have to be used in a given tree. Similarly, the same
function can be used more than once. The topology of the tree is effectively unrestricted.

We construct our function set using 12 unary processing filters and four basic binary
arithmetic functions, shown in Table 1. In our GP architecture, there are two noteworthy
points:

1. For the LapPyl and LapPy2 (Laplacian pyramid) filters, since the 100 x 100 x 70
blocks from adjacent levels of the Gaussian pyramid are of different sizes, we resize
them to the same dimensions before subtraction by linear interpolation.
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Figure 2: Illustration of a GP tree structure

2. The output of the Maxfilter operation is shrunk along the spatial and temporal dimen-
sions relative to the input. To ensure the closure property above, we resize the outputs
to a 100 x 100 x 70 block.

3.2.2 Fitness function

The basis of evolutionary methods is to maximize the performance of individual solutions as
gauged by some appropriate fitness function. To evaluate the candidate GP-evolved descrip-
tors here, we estimate their classification accuracy using a linear support-vector-machine
(SVM). We take the 100 x 100 x 70 output of the GP tree and divide this into 10 x 10 x 5
sub-blocks. The mean values of each sub-block are concatenated into a 500D vector which
comprises the input of a support-vector machine (SVM), as shown in Fig. 3. To obtain a
more reliable fitness evaluation, for each new GP tree we estimate the classification accura-
cy with the SVM using ten-fold cross-validation. We divide the GP training set randomly
into ten equal parts and perform ten repetitions of training the SVM on 9/10-ths of the set
and testing on the remaining tenth. The overall fitness of the candidate GP tree is taken as
the average of the ten SVM test-fold accuracies.



LIU ET AL.: GENETIC PROGRAMMING-EVOLVED SPATIO-TEMPORAL DESCRIPTOR

Table 1: Function set used in genetic programming

Operator name | Inputs Function description Operator type

The first level of a Gaussian pyramid which applies a

GauPyl ! 3D Gaussian filter with ¢ = 2 on input sequences

Filter

The second level of a Gaussian pyramid which applies a
GauPy?2 1 3D Gaussian filter with 6 = 2 on sequences Filter
obtained from first level of a Gaussian pyramid

The third level of a Gaussian pyramid which applies a
GauPy3 1 3D Gaussian filter with 6 = 2 on sequences Filter
obtained from second level of a Gaussian pyramid

The first level of a Laplacian pyramid which applies a

LapPyl ! subtraction between GauPy1 and GauPy2 Filter
The second level of a Laplacian pyramid which applies a .

LapPy2 ! subtraction between GauPy2 and GauPy3 Filter

Waveletl 1 The first leveHenryl of a wavelet pyramid which appliesa Filter

CDF ‘9/7° wavelet filter on input sequences

The second level of a wavelet pyramid which appliesa
Wavelet2 1 CDF ‘9/7° wavelet filter once again on sequences Filter
obtained from first level of wavelet pyramid

Subtraction between the adjacent

Dof ! frames of input sequences

Filter

Subtraction between the adjacent frames
absDof 1 of input sequences and then taking the absolute Filter
values of the processed sequences

Apply median filter with filtering window size

Med ! 5 x5 on the input sequences Filter
Mean 1 Apply mean filter Wth filtering window size Filter
5 % 5 on the input sequences
Maxfilter 1 Use 3D maxpoohng techmqu'e with pooling Filter
window size 4 x 4 x 4 on the input sequences

Add 2 Add the input sequences Arithmetic
Sub 2 Subtract the input sequences Arithmetic
Mult 2 Multiply the input sequences Arithmetic
absSub 2 Absolute subtraction of the input sequences Arithmetic
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Figure 3: Spatio-temporal feature representation procedure

3.3 GP implementation

We evaluate our proposed method using Matlab 2011a (with the Genetic Programming tool-
box GPLAB') on a server with a six-core processor and 32GB of RAM running the Linux
operating system. The total runtime was around three weeks. The user-defined GP parame-
ters are as follows:

Training set: We combine the KTH and Weizmann datasets to create the GP training
dataset which contains a total of 690 action sequences comprising 13 actions (i.e. boxing,
handicapping, handwaving, jogging, running, walking efc.) performed by several people in
different scenarios.

Population size: We use a population size of 100 individuals with the initial population
generated with the ramped half-and-half method [25].

Genetic operators: We use both tree crossover and mutation [25] as our genetic opera-
tors and fix their probabilities during the GP run at 90% and 10%, respectively.

Selection for reproduction: The selection method we apply is lexicographic parsimony
pressure [21] which is similar to tournament selection in choosing parents from a random
sub-set of individuals in the population. However, the unique feature of lexicographic parsi-
mony pressure is that the smallest individual (i.e. fewest tree nodes) will be selected if more
than one individual has the same best fitness in the selection competition.

Survival method: We utilize the ‘keepbest’ scheme for GP. In this scheme, the best
individual generated by GP is directly copied without change into the new generation. Con-
sequently, the best-performing individual is retained from one generation to the next. This
scheme has been demonstrated to lead to improved results in many different applications.

Stopping conditions: We set the GP termination criterion as the error rate falling to < 2%
or the number of generations exceeding 70.

http://gplab.sourceforge.net/download.html, A Genetic Programming Toolbox for MAT-
LAB
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Figure 4: (a) Some example poses from action sequences of the mixed KTH-Weizmann
dataset (b) Evolved average and best-so-far values of fitness (c) Tree structure for the best-
so-far descriptor.

4 Results

4.1 GP internal evaluation

To demonstrate the effectiveness and efficacy of the proposed method, we have used a mixed
KTH-Weizmann dataset which combines the KTH dataset? [27] with the Weizmann dataset’
[2] to evaluate the spatio-temporal descriptor generated by GP. Some sample frames from
this mixed dataset are shown in Fig. 4(a). We obtain an accuracy of 96.9% with the best-
so-far spatio-temporal descriptor generated by our proposed method, and shown in Fig. 4(c).
This best-so-far individual is a fairly simple linear sequence of operations. Although the
obtained descriptor is computer-generated, it still makes sense referring to [29] in which the
authors have also used max-pooling after filtering to extract salient features. The relevant
experimental results are shown in Table 2 together with comparison with other published
reports. It is clear that our automatically-generated solution is comparable to Liu and Shah
et al. [18] and superior to other methods.

4.2 Generalizability test

We further apply the best-so-far descriptor to the more challenging IXMAS dataset [34] to
test the generalizability of our solution. The IXMAS dataset is a multi-view dataset com-
posed of eleven human daily actions (i.e., check watch, cross arms, scratch head, sit down,
get up, turn around, talk, wave, punch, kick, pick up) performed by ten individuals and
recorded from five different viewpoints—see Fig. 5(a) for some example frames.

In our experiments, we first extract bounding boxes by using the foreground masks pro-
vided with the original dataset, and normalize them to a size of 100 x 100 x 70. We employ
the evolved spatio-temporal descriptor to represent the corresponding IXMAS action se-
quences. By adopting ’leave-one-out’ cross-validation, we evaluate the performance of our

2The KTH dataset contains six types of human action examples (boxing, handwaving, handclapping, jogging,
running and walking) performed by 25 different subjects with four scenarios: outdoors, outdoors with scale varia-
tion, outdoors with different clothes and indoors. From http://www.nada.kth.se/cvap/actions/.

3The Weizmann dataset contains ten actions types (bend, jack, jump, pjump, run, side, skip, walk, wavel, wave2)
performed by nine different subjects
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Table 2: Action recognition accuracies (%) on the mixed KTH-Weizmann dataset, indepen-
dent KTH and independent Weizmann datasets, respectively, for different methods

w KTH-Weizmann KTH  Weizmann
Methods
GP-based descriptor 96.9 93.8 100
Niebles et al. [23] - 83.3 72.8
Jhuang et al. [9] - 91.7 98.8
Fathi and Mori [5] - 90.5 100
Jietal [10] - 90.2 -
Schindler and van Gool [26] - 92.7 -
Liu and Shah [18] - 94.2 -

descriptor on each single-view camera as well as on the fused data from all five cameras
taken together. (The fusion strategy we use is simply direct concatenation of the descriptors
from all five views.) We achieve an overall accuracy of 93.6% for multi-view fusion recogni-
tion. The corresponding confusion matrix for the fused camera results is shown in Fig. 5(b).
Table 3 shows a comparison between our method and some previous work from which we
can observe that our method outperforms previously published results on the IXMAS dataset,
in some cases by a significant margin.

Confusion matrix on the IXMAS dataset

check watch

cross ams
scratch head
sit down

2 get up
scratch sit-down tum around

walk

wave cross-arm

wave

punch

kick

pick up

e Tog, oy, Yt %o, Yo, Py, i, Py ey, Oy,
Ko, 05 Wy, %0 Tt e 05 @
RO

check-watch  punch

(a) (b)

Figure 5: Results on the IXMAS dataset:(a) Some representative frames of action sequences
(b) The confusion matrix of the multiple camera fusion result

5 Conclusions

In this paper, we have proposed a GP-based method to generate a spatio-temporal descrip-
tor for human-action recognition. GP can automatically evolve a descriptor from a pool
of primitive operators. Our proposed method does not require any prior knowledge of the
structure of the descriptor. We have evaluated our method on the KTH-Weizmann dataset
and achieved an accuracy of 96.9% for action recognition. In addition, the best-so-far de-
scriptor has also been applied to the more challenging IXMAS dataset to demonstrate the
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Table 3: Comparison of action recognition accuracies (%) on the IXMAS dataset for different
methods

w Cam 1 Cam 2 Cam 3 Cam 4 Cam 5|Cam 1-5 fusion
Methods

GP-based descriptor | 86.5 89.3 88.1 84.7 78.3 93.6
Varma and Babu [32]| 76.4 745 73.6 71.8 60.4 81.3
Liu and Shah [18] | 76.7 73.3 721 73.1 - 82.8
Wu et al. [35] 819 80.1 771 776 734 88.2

Weinland et al. [33] 93.3

generalizability of our method; we obtain a 93.6% recognition rate.

In future work, we will attempt to accelerate the GP evolution process. The reliability
and flexibility of our algorithm will also be evaluated on more challenging datasets such as
the HMDBS1 [16], the YouTube [19] and the Hollywood [22] datasets.
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