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Motivation Graph matching has become widely used in several com-
puter vision applications including tracking, shape matching or object
detection. Many different approaches are available for solving the NP-
hard problem in an approximated manner, e.g. based on spectral tech-
niques, probabilistic methods or graduated assignments. Surprisingly,
only few papers focused on the important graph potentials themselves,
which have a tremendous influence on the quality of the obtainable re-
sults. For example, it was shown in [1] that solving a linear assignment
problem using well chosen potentials even improves over related state-of-
the-art quadratic assignment solutions.

One important challenge of using powerful potentials in graph match-
ing is their right parametrization, which is mostly done manually. Only
a few papers focused on the problem of choosing the right parameters.
Caetano etal. [1] showed how to learn optimal parameters for the fea-
tures used in the potentials from manually labeled reference data sets and
Leordeanu etal. [2] extended this idea to an unsupervised setting. Both
approaches strongly agree on the fact that learning the parameters is im-
portant for improving the matching performance.

In this paper we follow the idea of learning optimal parameters for
the task of graph matching, but instead of learning fixed parameters for
the features used as done in [1, 2], we directly learn edge-specific kernel
functions for each node pair, assuming that the setting of graph matching
is a-priori known. Such a-priori knowledge is indeed available in several
important computer vision applications like automated face alignment,
model fitting and object localization.

Method Our approach is divided into two main steps. First, in the train-
ing step, we learn a statistical shape model from labeled training images,
obtaining a model of the location uncertainties of the graph nodes. Our
model is then defined by edge-specific kernel functions for every pair of
nodes. Second, during testing, our method is an extension of standard
graph matching formulated as quadratic assignment problem. As the main
difference to standard graph matching solutions, we exploit the learned
kernel functions for improving matching quality.

We define our kernel functions K;; to relate an edge connecting points
i and j in our reference graph (consisting of Ny nodes) to an edge connect-
ing points a and b in the query graph (V; nodes) by deriving statistics of
the point location distributions within a labeled training set. Thus, we as-
sume that we have given a set of training images, with the same number
of labeled points in each image, where we require the labeled points to be
corresponding over the training set. We register all labeled points of the
training set to each other using Procrustes Analysis, which then allows to
describe the spatial distribution of each point over the training set by a
Gaussian as it is visualized in Figure 1.

Figure 1: Building a statistical shape model from labeled training data.
Unaligned point sets (left), Procrustes aligned sets (middle) and obtained
location uncertainties (right) are shown.

The goal of graph matching is to find a one-to-one mapping between
two graphs, which is defined by a binary assignment vector x* € RM M
where x}, = 1 if node i of the reference graph matches to node a of the

query graph and x}, = 0 otherwise and };x}, = 1,Y.,x}, = 1. Such stan-
dard quadratic assignment problems (QAP) are solved by

x* = argmax (XT AX) = argmaxZAiayjbxiaij , (1)
X X

where A is a provided Ny N x Nj N, affinity matrix describing how well

a pair of nodes in the reference (i, j) agrees in terms of local descriptors

and geometry with a pair of nodes in the query (a,b).

Similar to related methods we use shape context (s;) as local descrip-
tor for each node i, but replace the standard analysis of the differences
in edge lengths by our learned edge-specific kernel functions. For this
reason, the affinity matrix entries are adapted to
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where /C; j(ab) is the learned pairwise kernel function. Thus, in our setting
deviations from the reference graph geometry are penalized depending on
the location uncertainty as learned in the statistical shape model.

We relax the integer optimization of Equation 1 into the continuous
domain and solve it using Replicator Dynamics [3], an evolutionary algo-
rithm from the field of game theory. These dynamics iteratively update
the assignment vector X using
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where x is the assignment vector at time z. As a necessary additional
constraint x has to lie on the simplex (x ERMM ;x>0 and 17 x = 1).
Replicator dynamics return an optimal assignment vector x*, which is a
local (!) maximum of the optimization problem shown in Equation 1.
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Experiments In a first experiment we use our method to align a set
of face images using the IMM and AR face data sets. We used the mean
point set obtained from the training graphs (Mean) or each of them (All) as
reference graph and compared it to all point sets of the remaining test data.
Table 1 shows the average percentage of correct assignments, comparing
our proposed, learned potentials to standard ones. As can be seen, using
our learned kernel function clearly improves results by up to 25%.

GM AR data set IMM data set

Orig. ‘ Learned ‘ Impr. Orig. ‘ Learned ‘ Impr.
All 88.1 98.5 +10.5 56.3 81.3 +25.1
Mean | 95.6 98.7 +3.1 69.2 80.5 +11.3

Table 1: Percentage of correct assignments for matching to the mean point
model (Mean) or each model of the training data (All) using standard
(Orig.) and our learned potentials (Learned).

More experiments, e. g. on evaluating the influence of the number of
training samples on the matching quality and an application for feature
point based localization of previously unseen category instances in im-
ages, are provided in the main paper.
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