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Abstract

In this paper, we address the problem of learning objects by contours. Toward this
goal, we propose a novel curve evolution scheme which provides the classifier with more
accurate contour representations. We detect edgelet feature to help localize objects in
images so that the proposed evolution method can achieve more reliable contours. To
capture contours of objects with large variations in pose and appearance, we adopt the
similarity measure of HOG feature between the evolving contour and the contour of a
class as the evaluation criteria rather than relying on strong shape priors. We encode the
joint distribution of the edgelet feature, the HOG feature and the curvature feature of
an object in a mixture of Gaussian model. Classification is achieved by computing the
posterior of the evolved contour conditioned on the three types of features. Our method is
extensively evaluated on the UCF sports dataset, the Caltech 101 dataset, and the INRIA
pedestrian dataset. Results show that our method achieves improved performance for the
recognition task.

1 Introduction
Automatic understanding of objects has been receiving much attention in computer vision
community with applications in object recognition and action recognition. In this work, we
are interested in learning objects by their contours.

An object can be effectively characterized by its contour. Caselles et al. [1] introduced
the concept of geodesic active contours, which defines the essential function in the Rie-
mannian space and applies the energy reducing form to acquire contours. To obtain more
accurate contours for a class of objects, Leventon et al. [13] utilized the curvature prior as
the shape prior for different classes of objects to guide contour evolution. One of the popular
ideas in incorporating shape prior is to project it into a subspace. Thus, the lower dimen-
sional representation can be learned and the energy function is minimized in the learned
latent space. Etyngier et al. [6] proposed a non-linear manifold learning method for learning
shape prior. Specifically, a diffusion map is constructed using Nyström extension to learn
shapes in a low-dimensional subspace. Cremers [3] presented another non-linear shape prior
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Figure 1: Flowchart of our method. Our method introduces the concept of stub features as
potential edges for an object contour. The proposed evolution method uses stub features as a
rough contour and iteratively approaches the target contour. HOG features are utilized as the
global perspective of the contour and used as evaluation criteria of our evolution method.

using autoregressive (AR) model to approximate linear combination. Jiang et al. [10] uti-
lized a TPS-RPM based method, in which TPS-RPM is used to measure similarity between
two points sets. Prisacariu and Reid [16] introduced a non-linear shape prior and applied
it to segmentation and object tracking system based on the elliptic Fourier shape descriptor
(EFD) and Gaussian process latent variable models (GP-LVM).

Another line of work uses edges to describe objects. Edge-based models provide local
perspective of an object and are robust when part of the object is occluded. However, since
the global perspective is missing, the arrangement of the edge features, such as the pairwise
relationships between edge features [5, 12] or the relative positions of edge features with
respect to the centroid of the shape [15], is exploited to improve the edge-based models. Wu
and Nevatia [20] proposed an edgelet feature based method for detection of multiple, par-
tially occluded humans. Their method uses part of human contour as a mask, and computes
the similarity of the orientation and magnitude. A probabilistic model is then employed to
estimate the joint distribution of the detected edgelet response. Sabzmeydani and Mori [18]
proposed the shapelet features, a set of mid-level features, which focus on low-level local
gradient information that are discriminative between pedestrian and non-pedestrian classes.
Gao et al. [9] proposed an “adaptive contour features” based method for human detection
and segmentation. Their method selects seed features according to the orientations and the
relative strength of features.

In this paper, we propose a novel edge-based method for learning objects. The flowchart
is illustrated in Figure 1. Given an image, our method first detects edgelet features as a
rough contour for an object. Edgelet features indicate potential positions for the contour and
may stop curve evolution. These positions are referred to as stub features. Object contour
is adaptively refined by the level set method. The evaluation criteria for contour evolution is
defined by the similarity between the evolving contour and the target contour computed by
their HOG features [4]. Therefore the curve evolution method is referred to as the Contour-
HOG method. We formulate the joint distribution of the edgelet feature, the HOG feature
and the curvature of the evolved contour in a probabilistic model, and perform classification
by computing the posterior of the evolved contour conditioned on the three types of features.

The Contour-HOG method is inspired by detection and segmentation methods. Com-
pared with previous methods [2, 8, 20], our method uses stub features to roughly localize the
target object. This allows us to accurately capture the contour of the object. Moreover, the
method fuses both local and global features to better describe contours and thus improves
the recognition accuracy.
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2 Stub Feature Detection
Our method begins by detecting edgelet features [20]. We use these features to roughly find
an object from an image and then run a contour evolution method to obtain the object con-
tour. Edgelet features indicate potential segments of the contour and can stop the evolution
procedure. Thus, these features are referred to as stub features in this work. Stub features
are obtained by applying a local edge mask Mk,s and used for representing a short segment
of a curve. The mask Mk,s is a function of scale s and shape k, and maps points to 1 or 0.

With the detected stub features, we compute their similarities with the stub features in
training data under a predefined edge mask Mk,s. The similarities are further used in shape
classification. A stub feature can be represented by the magnitude of gradient and its orienta-
tion. In this work, we assume that they are independent from each other. Then the similarity
can be computed as

p(x,s,k) = po(x,s,k)pg(x,s,k), (1)

where x is the 2D coordinate for a stub feature, pg(x,s,k) represents the likelihood of a
local gradient and a mask having the similar magnitude, and po(x,s,k) is the distribution of
a gradient sharing the same orientation with the mask. We define pg(x,s,k) as a Gaussian
distribution:

pg(x,s,k) =
1

√
2π|Σg|

1
2

exp
(
−1

2
[g(x)−µ]T Σ

−1
g [g(x)−µ]

)
. (2)

Here, µ and Σg are the mean and standard deviation of gradient magnitude, respectively.
g(x) is the magnitude of gradient vector derived by operating a mask Mk,s on an input image
I: g(x) = |∇I(Mk,s(x))|.

Distribution po(x,s,k) is computed by measuring the similarity between two orientation
vectors of local regions in a testing image and a training image. The orientation vector
Iq(Mk,s(x)) for a testing image is computed by quantizing gradient orientations of a local re-
gion on the image indexed by mask Mk,s(x), and the orientation vector It(Mk,s) for a training
image is computed by quantizing gradient orientations on a training image indexed by Mk,s.
Then the similarity is computed by

po(x,s,k) =
‖v(Iq(Mk,s(x)), It(Mk,s))‖2

2
NT 2 , (3)

where ‖ · ‖2 is the l2 norm, N denotes the number of pixels selected by the mask and T
represents the number of orientations. We quantize gradient orientations into T directions,
then the distance between two quantized directions o1 and o2 is defined as

v(o1,o2) = min{max{o1,o2}−min{o1,o2},min{o1,o2}+T −max{o1,o2}}. (4)

3 Evolution Model

3.1 Contour Representation
The evolution model starts with the detected stub features and adaptively selects the features
as the contour for an object. In this work, we adopt the Elliptic Fourier descriptor (EFD) [11]
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to represent an object contour. EFD depends on the first-order derivatives of Fourier series
parameterized by traversal distance parameter s:

∂x
∂ s

=
∞

∑
i=1
−2nπ

T
ansin(

2πns
T

)+
2πn
T

bncos(
2πns

T
), (5)

∂y
∂ s

=
∞

∑
i=1
−2nπ

T
cnsin(

2πns
T

)+
2πn
T

dncos(
2πns

T
). (6)

In the evolution model, the curvature force is defined by both first-order and second-order
derivatives of contours. The second-order derivatives of EFD are given by

∂ 2x
∂ s2 =

∞

∑
i=1
−(2nπ

T
)2ancos(

2πns
T

)− (
2πn
T

)2bnsin(
2πns

T
), (7)

∂ 2y
∂ s2 =

∞

∑
i=1
−(2nπ

T
)2cncos(

2πns
T

)− (
2πn
T

)2dnsin(
2πns

T
). (8)

Figure 2: Examples of contour decomposition. The first row shows 1st, 4th and 5th compo-
nents of human contour. The second row shows the 6th, 15th and 30th components of human
contour.

3.2 Evolution Model
Our evolution model utilizes curvature force to guide contour evolution. The curvature force
is defined as the ratio between the curvature of the shape prior κp and the curvature of the
evolving contour κc: fκ =

κp
κc

, where the curvature κ is given by

κ =
x
′
(s)y

′′
(s)− y

′
(s)x

′′
(s)

[(x′(s)2 + y′(s)2]3/2 . (9)

With the detected stub features, the contour generated by the evolution method iterative-
ly approaches the target contour. To obtain the global perspective of an evolving contour,
we compute the HOG feature of the evolving contour and measure its similarity with the
contours of classes. The using of the global similarity measure of contours allows us to
accurately obtain object contour. Examples of contour evolution are illustrated in Figure 2.
The main steps of our shape evolution algorithm are listed in Algorithm 1.
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Algorithm 1: Stub feature based Contour Evolution

Inputs: stub feature set S = {S1, ...,SN}, initial contour curvature κp and threshold θ .
Output: potential contour set P.
1: set potential contour set P as empty;
2: for each stub feature Si
3: initialize level set according to the stub feature Si;
4: do
5: set evaluation flag e f ←− non-ready and ev←− 0;
6: set candidate set as empty;
7: get current contour Cc;
8: calculate current curvature κc of the evolving contour;
9: calculate curvature force using Eq.(9) and do linear interpolation;
10: for i = 1: length(Cc)
11: if current contour points fall into one of stub features
12: put current stub feature Si into the candidate set;
13: set evaluation flag e f ←− ready;
14: end if
15: end for
16: update curvature force in level set in κt and κc;
17: if e f = ready
18: ev←− evaluate HOG of current contour C using SVM;
19: if ev > θ

20: put ev current Cc and candidate set into the potential contour set P;
21: end if
22: end if
23: while level set is not converged to level 0
24: end for

4 Object Classification

4.1 Classification Model
In our work, an object is classified by the similarity between the evolved contour of the object
and the contour of a target object in the training dataset. The similarity is evaluated based on
their curvatures, stub features and HOG features. We compute the similarity as

p(κc,κt ,Shog,Sstub) = p(κc|κt ,Shog,Sstub)p(κt ,Shog,Sstub), (10)

where κc and κt denote the curvature of an evolved contour and a target contour, respectively.
Shog is the affinity of contour-HOG features between an evolved contour and a target contour,
and Sstub is the affinity of stub features between them. In our work, we assume κt and Shog
are independent of Sstub. Then Eq.(10) can be given by

p(κc,κt ,Shog,Sstub) = p(κc|κt ,Shog,Sstub)p(κt ,Shog)p(Sstub). (11)

Here, we define p(κc|κt ,Shog,Sstub) as a Gaussian distribution:

p(κc|κt ,Shog,Sstub) =
1√

2πσ
exp(−||κc−κt ||22

2σ2 ), (12)
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where σ is the standard deviation. In Eq.(11), distribution p(κt ,Shog) is the similarity of
HOG features between an evolved contour and a contour of a class computed in the LINE
18 of Algorithm 1. p(Sstub) is the similarity of an edge segment and a predefined edge mask
computed in Eq.(1).

4.2 Model Training
We use a likelihood function Λ(Y ;θ) to measure the likelihood of a particular model with N
training samples:

Λ(Y ;θ) =
N

∏
n=1

f (yn;θ), (13)

where yn is the n-th training sample and θ represents a vector of parameters for the estimation
function f . We decompose a training contour into harmonics of Fourier series, implying that
the training contour can be viewed as summation of all harmonics. In this work, we define
the joint likelihood function as a Gaussian mixture model (GMM):

Λ(Y ;θ) =
N

∏
n=1

K

∑
k=1

wkG(y; µk,δk), (14)

where K is the number of components, wk denotes the weight for the k-th component in the
GMM, G represents the Gaussian distribution, µk is the mean of the k-th component, and δk
is covariance of the k-th component. Our parametric model is learned as follows:

θ̂ = argmax
θ

{Λ(Y ;θ)}. (15)

In this work, we use Expectation-Maximization (EM) algorithm to train the model.

5 Experiment
We test our method on three datasets, the UCF Sports dataset [17], the Caltech 101 dataset
[7], and the INRIA pedestrian dataset [4]. UCF Sports dataset consists of 11 actions collected
from broadcast media platform such as BBC and ESPN. Caltech 101 dataset contains 101
object classes. We select 10 classes from this dataset to test the performance of the method.
Each class consists of 100 images (1000 images in total). On these two datasets, we evaluate
the recognition accuracy of our method. We also apply our method to object detection and
evaluate its performance on the UCF Sports dataset and the INRIA pedestrian dataset.

5.1 Recognition Results on UCF Sports Dataset
We test the recognition performance of our method on the UCF sports dataset. We randomly
select 10 frames from a video as representative frames and use voting on these frames to
classify the video. Confusion matrix is shown in Figure 3. Our method achieves 84.09%
accuracy on this dataset. This result is encouraging since the method not only can recognize
actions but also can segment people from images. Our method can recognize human actions
with large variations in view-point and appearance. This is mainly due to the fact that it
describes contours by multiple features and thus accurately captures contours of deformable
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Figure 3: Confusion matrix of our method on the UCF Sports dataset.

objects. Moreover, the evolution method segments target objects from cluttered images and
provides the classifier with noiseless shape features.

We also illustrate the intermediate results given by the evolution method in Figure 4. Re-
sults demonstrate that the contours of people in large pose variations can be captured by the
proposed evolution method. This method utilizes HOG feature similarity as the evaluation
criteria rather than relying on a strong shape prior for each action class. This allows us to
obtain accurate contours of people in drastic motion (e.g. Skate-Boarding). With accurate
contours, our method is able to accurately infer the class for an unknown example.

Figure 4: Intermediate results of our evolution model. The first row shows the detected stub
features before starting level set evolution. The second row shows the results of segmenta-
tion. This figure is best viewed in color.

We compare the proposed method with methods in [17, 19, 21] on the UCF sports
dataset. Results in Table 1 indicate that our method achieves comparable results with the
dense HOG3D method in [19] but outperforms [17, 21]. It should be noted that, compared
with these methods, our method can jointly recognize actions and segment target people
from images. However, other comparison methods can only perform recognition.

Table 1: Comparison results on the UCF sports dataset. Seg. and Rec. are short for segmen-
tation and recognition, respectively.

Methods Ours Wang et al. [19] Yeffet & Wolf [21] Rodriguez et al. [17]
Accuracy 84.09% 85.06% 79.2% 69.2%

Func. Seg. & Rec. only Rec. only Rec. only Rec.
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5.2 Recognition Results on Caltech 101 Dataset
We also evaluate the performance of our method on object recognition using Caltech 101
dataset. This dataset consists of 101 object classes. 10 classes are selected from this dataset
to build a new dataset for evaluation: Seahorse, Kangaroo, Anchor, Motorbike, Ketch, Can-
non, Pyramid, Lamp, Ferry, and Hawksbill. There are 100 images for each class, to provide
1000 images in total.

Our method achieves 82.7% recognition accuracy on Caltech 101 dataset. Confusion
matrix is displayed in Figure 5. It should be noted that the method distinguishes different
object classes by shapes of objects rather than popularly used local salient features such as
SIFT features [14]. The extraction of contours allows us to jointly recognize and segment
objects. Our method fuses multiple features including the curvature features, local stub fea-
tures and global HOG features for recognition. These features capture different perspectives
of shapes and thus reduce misclassification rates. Moreover, level set applied in our method
provides clean shape features and thus benefits the recognition task. Most of the confusion
is due to occlusions and illumination variations. Another reason for misclassification may
be due to similar parts are shared in two different classes, e.g. Lamp and Pyramid. Figure
6 shows segmentation results given by the evolution model. Results show that our evolu-
tion method precisely extracts objects of interest from cluttered images. Thus, clean shape
features can be computed from the extracted objects and further facilitate the recognition.

Figure 5: Confusion matrix of our method on the Caltech 101 dataset.

Figure 6: Segmentation results on Caltech 101 dataset. This figure is best viewed in color.

5.3 Detection Results
To assess the performance of our method on detection, we evaluate it on the UCF sports
dataset and the INRIA pedestrian dataset. Both datasets contain variations in scales, poses,
and clothing styles. We compare our method with four variant detectors in [20]: edgelet of
head shoulder (Edgelet-HS), legs (Edgelet-L), full body (Edgelet-FB) and torso (Edgelet-T),
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Figure 7: Detection results of methods on the UCF sports dataset and INRIA dataset.

and rectangular HOG detector (R-HOG) in [8]. Wu and Nevatia [20] used edge features and
Felzenszwalb et al. [8] focused on both local and global features. Our method applies level
set to obtain contours and uses support vector machine as the detector.

In the first experiment, we test detection performance of methods on the UCF sports
dataset. The experiment mainly focuses on detecting single pedestrian, and we ignore the
case if multiple pedestrians are detected. There are 13 types of actions in the dataset. We
randomly select 200 images from each action class to provide 2600 images in total. The
experiment is conducted by randomly selecting one image from the dataset, and calculate
the intersection of the detected bounding box and the ground truth over the whole area of
ground truth, until the number of false alarms reaches upper bound.

Results in Figure 7(a) show that our method outperforms all the comparison methods.
Compared with methods in [8, 20], our method applies level set method to obtain the contour
of an object and thus provides the detector with much cleaner features. It should be noted that
methods in [8, 20] offer the bounding box of an object while our method gives the detection
results at contour-level which provide more accurate feature for an object.

Another test set is selected from INRIA pedestrian dataset which contains 1132 positive
samples and 453 negative samples. All samples are mixed together and one image is tested
at a time. We compare our method with methods in [8, 20] on this dataset. Precision-Recall
curves are illustrated in Figure 7(b). Results also show that our method outperforms all the
other comparison methods.

6 Conclusions and Future Work

We have proposed a novel edge-based method for object recognition. Our method introduces
the concept of stub features which can be utilized for roughly localizing objects in images.
This allows our contour evolution method to accurately obtain the contour of an object. We
use the HOG feature in the evolution method as the evaluation criteria to achieve the contour
of a deformable object with large variations. The contour is described by multiple features:
the stub feature, the HOG feature and the curvature feature. We characterize those features
in a joint distribution. Classification of an object is computed by the posterior of its contour.

Citation
Citation
{Felzenszwalb, McAllester, and Ramanan} 2008

Citation
Citation
{Wu and Nevatia} 2005

Citation
Citation
{Felzenszwalb, McAllester, and Ramanan} 2008

Citation
Citation
{Felzenszwalb, McAllester, and Ramanan} 2008

Citation
Citation
{Wu and Nevatia} 2005

Citation
Citation
{Felzenszwalb, McAllester, and Ramanan} 2008

Citation
Citation
{Wu and Nevatia} 2005

Citation
Citation
{Felzenszwalb, McAllester, and Ramanan} 2008

Citation
Citation
{Wu and Nevatia} 2005



10 ZHI YANG, YU KONG, YUN FU: CONTOUR-HOG FOR LEARNING OBJECT CONTOUR

Our method is extensively evaluated on three datasets and shows promising results.
In this paper we have assumed that there is only one object in an image. We are going to

extend the method to jointly recognize and segment multiple objects in future work.
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