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Many widely used imaging operations lead to specific degradations of im-
ages with respect to the ground truth. The removal of these degradations
is one of the most important tasks in computer vision, image processing,
and computational photography. For instance, image encoding deficien-
cies such as block artifacts have to be removed frequently. Deterioration
and information loss due to the limitations of the optical system, such as
limited sensor resolution or defocusing, should also be erased.

This paper presents an algorithm for learning-based image enhance-
ment. At each pixel in the given degraded image, a small sub-window en-
compassing that pixel (patch) is extracted and the corresponding desired
patch is estimated based on Gaussian process (GP) regression. As the out-
put patches (i.e., the predictive means) overlap with their neighbors, the
result of the regression step constitutes a set of candidates for each pixel
location. The final pixel-valued output is synthesized by combining the
candidates based on the corresponding predictive variances and trading
the consistency with them with a global image prior as a regularizer [1].

While GP regression has been shown to be competitive on a wide
range of small-scale applications, its application to large-scale problems
is limited due to its unfavorable scaling behavior. A standard approxi-
mate approach to overcome this limitation is to introduce a small set of
inducing variables fU = { f (u1), . . . , f (um)} (corresponding to inducing
inputs U = {u1, . . . ,um}) through which the conditional independence of
the training (f) and target (f∗) latent variables is assumed in the approxi-
mation of the joint prior (cf. the unified framework of [2]):

p(f∗, f)≈ q(f∗, f) =
∫

q(f∗|fU )q(f|fU )p(fU )dfU . (1)

The training conditional q(f|fU ) is approximated subsequently. This leads
to a set of approximations which are referred to as sparse GPs where the
inference is carried out through fU summarizing l training data points.

In existing sparse GP algorithms, once identified, the inducing inputs
U are fixed throughout the entire test set. The problem is then cast into
an optimization where one constructs U based on a certain measure of ap-
proximation quality (e.g., marginal likelihood and information gain). The
performance of a sparse approximation depends heavily on the inducing
inputs U . However, usually the corresponding optimization problem is
non-convex and accordingly is not easy to solve.

In this paper, we present a simple alternative to these off-line ap-
proaches: We build a sparse GP which is specially tailored for a given
test input x∗ (i.e., U ≡ U∗ is chosen depending on x∗; The correspond-
ing GP model is constructed only when it is presented with a test point
x∗). An important advantage of this on-line approach is that it naturally
leads to an extremely simple strategy for identifying U∗: If we introduce
a spatial Markov assumption on { f∗, f}

p( f∗|f,N ( f∗))≈ q( f∗|N ( f∗)), (2)

where N ( f∗) denotes the values of the latent function f for the inputs in
the spatial neighborhoods N (x∗) (of x∗), the decomposition (1) becomes
exact once we use N (x∗) for U∗.

This approximation dramatically reduces the computation time dur-
ing training. Actually, the only training component is building a data
structure for nearest neighbor (NN)-search, which facilitates identifying
N ( f∗). However, for large scale problems (l≈ 2∗105 in the current appli-
cations), this approximation might be still impractical. The second step of
our approximation is to introduce an additional Markov-like assumption
directly on the observations:

p( f∗|Y,N1(y∗))≈ q( f∗|N1(y∗)), (3)
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Figure 1: Examples of image enhancement: (top) JPEG artifact re-
moval, (middle) (generic) single-image super-resolution, and (bottom)
(document-specific) single-image super-resolution.

where Y is the set of training labels and N1(y∗) denotes the observed
training target values in the spatial neighborhood N1(x∗) of x∗. To guar-
antee that the resulting GPs are non-locally regularized, we set N (x∗)⊂⊂
N1(x∗). The spatial Markov assumption (2) is fairly natural and has
proven to be effective in many different applications while the second ap-
proximation step (3) is motivated by the large-scale behavior of full GPs:
For large l, the predictive distribution p( f∗|Y) of a full GP is not affected
by the data points which are sufficiently distinct from x∗ [3].

Since the only training component of the new approximation is build-
ing a data structure for NN-search, the off-line processing is very fast.
Therefore, the resulting image enhancement system is very flexible as the
it can be easily adapted to the distribution of a specific (non-generic) class
of images. This is important especially when a priori knowledge of the
problem is available in terms of a class-specific set of example images.
For instance, if it is known that the image of interest to be processed
is representing documents (whose statistical properties might be distinct
from those of general images), one could quickly generate examples from
this specific class of images on which the system is trained. While this
leads to much better results (see the last low of Fig. 1), it is infeasible in
conventional sparse GPs due to their high complexity in training (which
includes the identification of inducing inputs).

We demonstrate the utility of our algorithm in two example image
enhancement applications that can benefit from the high efficiency of our
approximation (both in training and in testing): suppression of compres-
sion artifacts in JPEG images and single-image super-resolution (Fig. 1).
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