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Abstract

Our aim in this paper is to robustly match frontal faces in the presence of extreme illu-
mination changes, using only a single training image per person and a single probe image.
In the illumination conditions we consider, which include those with the dominant light
source placed behind and to the side of the user, directly above and pointing downwards
or indeed below and pointing upwards, this is a most challenging problem. The pres-
ence of sharp cast shadows, large poorly illuminated regions of the face, quantum and
quantization noise and other nuisance effects, makes it difficult to extract a sufficiently
discriminative yet robust representation. We introduce a representation which is based
on image gradient directions near robust edges which correspond to characteristic facial
features. Robust edges are extracted using a cascade of processing steps, each of which
seeks to harness further discriminative information or normalize for a particular source
of extra-personal appearance variability. The proposed representation was evaluated on
the extremely difficult YaleB data set. Unlike most of the previous work we include all
available illuminations, perform training using a single image per person and match these
also to a single probe image. In this challenging evaluation setup, the proposed gradi-
ent edge map achieved 0.8% error rate, demonstrating a nearly perfect receiver-operator
characteristic curve behaviour. This is by far the best performance achieved in this setup
reported in the literature, the best performing methods previously proposed attaining er-
ror rates of approximately 6–7%.

1 Introduction
The aim of this work is to match images of frontal faces across extreme illumination changes.
This is a problem of importance in a broad range of practical applications. Indeed, in security
applications which authenticate the user before granting access to a particular resource, the
user is asked to face the camera. Examples include passport checks, entry control to buildings
and mobile phone authentication, amongst others. Person based retrieval systems working
on highly unconstrained data, such as that extracted from TV films and series, also often
focus on nearly frontal faces [3, 9] in no small part because face detection is most reliable
for this pose. Frontal faces can then be synthesized from non-frontal views. Everningham
and Zisserman [9] achieve this using a generic 3D head model, Gross et al. [12] adopt an
active appearance model while Wong et al. [23] describe a regression based method.

c© 2012. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

Citation
Citation
{Arandjelovi{¢} and Cipolla} 2006{}

Citation
Citation
{Everingham and Zisserman} 2005

Citation
Citation
{Everingham and Zisserman} 2005

Citation
Citation
{Gross, Matthews, and Baker} 2006

Citation
Citation
{Wong, Sanderson, and Lovell} 2009

http://dx.doi.org/10.5244/C.26.12
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The process of imaging a face is inherently lossy. In projecting the 3D shape of a face
onto a 2D surface, discriminative depth information is lost [18]. This problem is particularly
pronounced when faces are imaged in the frontal pose. A convincing corpus of evidence
both from computer vision as well as human physiology supports the observation that the
frontal pose is not optimal for recognition [13, 16]. The key reason for this is that in this
case the most salient facial features extend towards the camera, making their depth variation
hard to judge. Therefore it is unsurprising that even the best performing methods of today
struggle when applied in a setting in which only a single image of a face is used for training
and another single image as a query, with possibly extreme illumination changes between
the two. The challenge is readily seen in Figure 1 which shows some of the illumination
conditions which motivate the present work. Cast shadows, the presence of overhead (el-
evation/inclination up to 90◦), lateral and even rear (azimuth up to 130◦) illumination, and
overexposed facial regions are just some of the difficulties of note.

Figure 1: Examples of extreme illuminations present in the data set used in this paper.

In this paper we describe an algorithm which comprises a cascade of processing steps,
each aimed either at harnessing further discriminative information or at normalizing for a
particular source of extra-personal appearance variability. The end result of the cascade is
an image which can be easily matched against other images computed in the same way. This
representation retains discriminative information contained around characteristic facial fea-
tures and, considering that the image plane 2D geometry is preserved, the spatial relationship
between these features.

2 Computing Invariant & Discriminative Representation

In this section we introduce the main contribution of the present paper – a cascade of pro-
cessing steps which produce a discriminative and invariant representation of a person’s face.
We begin by looking at some of the representations which are widely used in face recogni-
tion and motivate the proposed approach by highlighting their limitations in the presence of
extreme illumination conditions. This is a followed by detailed explanation of the cascade
which is for the convenience of the reader also summarized in the diagram in Figure 2.
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Figure 2: An overview of the key steps of the proposed dual pipeline cascade used to produce
an invariant and discriminative representation of a face.

2.1 The Cascade: Step by Step
Person specific, discriminative information is not uniformly distributed across different parts
of a face. Rather, the areas around characteristic facial features, such as the eyes and the nose
are generally the most important ones for recognition. Unsurprisingly, this observation is
exploited by most automatic methods. Algorithms based on elastic graph matching [6, 7, 14]
or local feature analysis [4], amongst others, explicitly use the appearance of only a select
number of characteristic features. Others adopt one of a variety of statistical approaches [1,
5, 19, 20, 22] and when applied in a discriminative setting end up automatically learning
exactly these characteristic features as the ones most useful for recognition.

Most of the discriminative information is contained in the parts of the face exhibiting
substantial variation in either geometry (that is to say, facial surface normal direction) or
albedo. By the very nature of the imaging process, these variations generally produce regions
of observed appearance variation in images too. As such, they can be readily detected using
direct computations on pixel intensities. One of the simplest methods of accomplishing this
is by applying a 2D high pass filter. Generally, the filter is applied in the spatial domain by
first convolving the image I with a Gaussian kernel G to produce the low pass image ILP:

ILP = I ∗G (1)

and then subtracting the low pass image from I:

IHP = I− ILP (2)

This filter has been widely used in face recognition. For example, Fitzgibbon and Zisser-
man show that it can be used to suppress the effects of illumination for face clustering in
films [10]. However, when applied on images of faces under extreme illuminations such as
those considered in this paper, the simple high pass filter fails in achieving a satisfactory
result. As our experiments in Section 3 will demonstrate, the error rate of 68.49% for raw
images is reduced only to 47.98% by high pass filtering. One of the reasons for this poor
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performance can be readily observed by examining a representative input image, such as that
shown in Figure 3(a) and the high pass filtered result in Figure 3(b). Specifically, notice that
the discontinuities in the poorly lit, shadowed regions are much less pronounced than those
in well illuminated regions.

(a) (b) (c) (d)

(e) (f) (g)

Figure 3: Representations produced at different stages of the proposed pipeline: (a) original
raw appearance, (b) band pass filtered appearance, (c) self-quotient image, (d) Canny edges
computed from the original image, (e) Canny edges computed from the self-quotient image,
(f) symmetrically consistent and reliable edges, and (g) the final representation of gradient
directions constrained to the neighbourhood of symmetrically consistent and reliable edges.

The dependence of the magnitude of the intensity discontinuities preserved by high
pass filtering can be addressed by using one of the Retinex-like methods first described by
Land [15]. These methods are in part inspired by the human visual system and the obser-
vation that humans perceive brightness in a relative rather than absolute manner. In other
words, a discontinuity of a small magnitude in a dark region should have a greater effect
than a discontinuity of the same magnitude in a bright region. The high pass filter can this
be modified simply by dividing pixel-wise the filtered result with the low pass filtered image
which has the effect of averaging image intensity. This is a variant of the self-quotient image
[21]:

ISQI(x,y) =
IHP(x,y)
ILP(x,y)

(3)

The result of applying this filter on the same input image as before is shown in Figure 3(c)
which indeed appears to be an improvement over the output of the high pass filter. However,
when this representation is used for matching on our data set, the outcome is perhaps sur-
prising. As we will discuss in Section 3, the error rate on our data set is in fact increased
to nearly that achieved by using raw appearance. A more detailed inspection of the image
in Figure 3(c) reveals insight into the causes. Specifically, the noise in the poorly lit regions
of the face has been amplified, as has the originally imperceptible boundary of the shadow
caused by (weak) ambient illumination. The filter also causes the appearance of artefacts
around interfaces between very bright and very dark image regions.
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Steps 1 and 2: Provisional Edges Our method avoids the described difficulties associated
with the use of absolute intensity by concentrating on the binary edge image. This is the first
step of the proposed cascade. Note that we do not detect edges directly in the original image.
Instead, we apply the Canny edge detector on the self-quotient image, to ensure that very
weak edges in poorly illuminated regions are correctly detected. The difference between the
two approaches is illustrated in Figure 3(d) and Figure 3(e). Note that our approach results in
higher Canny thresholds (automatically estimated based on the histogram of the input image
gradients). While this has the effect of producing fewer false edges in the well lit regions of
the face and more true edges in the poorly lit regions, the number of spurious edges in the
poorly lit regions is also increased. This problem is addressed in the next step of our cascade.

Step 3: Spurious Edge Removal The edge map computed from the self-quotient image
may contain many false edges. Some of these may result from the amplification of noise in
poorly lit regions of the face. Others may be strong edges at the boundaries of cast shadows.
Highly saturated image regions may also cause the hallucination of edges. Regardless of
what the underlying cause is, false edges can decrease the matching accuracy. For example,
it is straightforward to see that the left hand side of the edge map in Figure 3(e), full of
densely packed false edges, will match nearly any true face edge map rather well.

We remove most false edges by exploiting the vertical symmetry of frontal faces. Specif-
ically, we require a degree of agreement between the left hand and right hand sides of the
edge map. If E is the binary edge image and x. . . the vertical mirroring operator the new
binary edge image ET with spurious edges removed is computed as follows:

ET (x,y) =

{
1 : E(x,y) = 1 and

x
E DT (x,y)≤ 2

0 : otherwise
(4)

where EDT = fDT (E) is the distance transformed edge image. In other words, we remove all
edge segments which are not within ≈ 2 pixels from the corresponding mirrored edges. An
example result is shown in Figure 3(f).

Steps 4 and 5: Edge Reliability Refinement Note that after spurious edges are removed
in the previous step of the cascade, the resulting binary image ET is not necessarily vertically
symmetric. Since a perfectly invariant representation of a frontal face should be vertically
symmetric, we interpret this lack of symmetry as arising from true but unreliable edges, i.e.
edges which are not repeatably detected across different illuminations.

To ensure that the final representation contains only those true edges which are repeatably
detectable, we again exploit the vertical symmetry of frontal faces. We first dilate the edge
image ET using a 4× 4 pixel sized solid circle structuring element S and then combine the
dilated edge information from the left hand and right hand sides of the face:

ER(x,y) = min
[

ET (x,y)⊕S,
x
E T (x,y)⊕S

]
(5)

where ⊕ is the dilation operator.

Steps 6 and 7: Merging Edge and Gradient Information In the last step of the proposed
cascade, we incorporate into our representation further discriminative information. The spe-
cific limitation of the edge map that we wish to overcome is its limited ability to robustly
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capture shape. This is a consequence of the observation that each edge map pixel by itself
only contains information about whether an edge passes through it or not. Edge pixels carry
no additional information about the directionality of the corresponding edge. We demon-
strate that a highly discriminative representation can be obtained by combining the dilated
reliable edges map and the corresponding gradient phase. This is achieved by computing a
3D image comprising two “stacked” 2D images which contain horizontal and vertical gradi-
ent information at the image loci at which the dilated edge map is non-zero:

EGM(x,y,1) =

{
∂ I
∂x/|∇I| : ER(x,y)> 0
0 : ER(x,y) = 0

(6)

EGM(x,y,2) =

{
∂ I
∂y/|∇I| : ER(x,y)> 0

0 : ER(x,y) = 0
(7)

Notice that the horizontal and vertical gradients are normalized by the magnitude of the total
gradient. This is performed with the intention of taking into account the unreliability of
absolute or even relative image intensity across different illuminations. The directionality
of the gradient, on the other hand, is preserved well in the vicinity of strong discontinuities
(but not necessarily elsewhere). The proposed representation is illustrated in Figure 3(g),
displayed as the two stacked images side by side.

3 Evaluation
We evaluated the proposed representation on the YaleB database [11]. This is a challenging
data set used as a standard benchmark for the comparison of face recognition algorithms
in terms of their robustness to severe illumination changes. The variation in the direction
of the dominant light source illuminating a face is extreme: its azimuth varies from -130◦

to 130◦, and its elevation from -40◦ (i.e. pointing upwards) to 90◦ (i.e. directly overhead,
pointing downwards), giving a total of 64 different illumination conditions. Notice that the
face is sometimes illuminated from the rear lateral direction (and thus hardly illuminated at
all), that extreme cast shadows are often present as are highly bright saturated image regions.
Some of these challenges have already been illustrated in Figure 1. The database does not
include any intentional variation in facial expression, but some variation exists nonetheless,
mainly in the form of squinting when the subject is facing the dominant light source.

It is important to emphasize just how much more challenging our evaluation protocol
is in comparison to those adopted by most of the previous work on this database. The first
major difference is the range of illumination variation, which is severally constrained in most
previous work. For example, Georghiades et al. [11] evaluate their method on the subset of
the database which includes only those images for which the angle between the dominant
light direction and the viewing direction is at most 45◦. This has the effect of halving the
number of images used and removes exactly the most challenging illumination conditions.
Another significant difference is that we use only a single image for training and only a single
probe image for testing the algorithm. In contrast, the method of Georghiades et al. requires
seven images with specific dominant illumination directions for training. Lee et al. [17]
use nine training images. Yet other methods require a manual placement of predetermined
characteristic feature points, such as the method of Xie and Lam [24] which uses twenty
such points. Evaluated in the same setup as ours, the highest reported rates achieved on this
database do not exceed approximately 93–94% [8].
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Table 1: Mean recognition error rates achieved using different representations: raw ap-
pearance, high pass filtered appearance (HPF), self quotient image (SQI), an edge image, a
Gaussian blurred edge image, and the proposed gradient edge map. In all cases recognition
was assessed in a 1–to–N matching scenario, using a single training image per person and a
single probe image.

Raw HPF SQI Edges Blurred edges Proposed
All conditions 0.6849 0.4798 0.6297 0.2801 0.1757 0.0082
“Easy” subset 0.4881 0.2513 0.1432 0.1260 0.0203 0.0000

Unlike most of the previous work, we evaluate the effectiveness of the proposed repre-
sentation using all the available illuminations, including the most extreme ones. To obtain
an estimate of the mean 1–to–N recognition rate, we perform 10,000 simulated recognition
challenges, randomly choosing a single training image per person. A test, probe image is
then matched against all of them and assigned to the nearest class using the nearest angle
distance. In other words, if fR(. . .) is a function which rasterizes an image, the similarity
between a probe image I′ and a training image I is computed as:

ρ(I′, I) =
fR(E ′GM)T fR(EGM)

| fR(E ′GM)|| fR(EGM)|
(8)

where E ′GM and EGM are the gradient edge map representations computed from I′ and I.
Using the same matching method, we also obtain the receiver-operator characteristic curves.

3.1 Results
The key recognition results are summarized in the first row of Table 1 which shows the
average recognition error achieved using different representations of a face. As expected,
unprocessed appearance performs poorly, making an incorrect decision in 68.49% of the
cases. High pass filtering improves the results somewhat, reducing the error rate by 70%
down to 47.98%. This trend is consistent with the previous reports in the literature.

On this data set the self quotient image representation does not fare as well as the high
pass filter. As explained in Section 2, this is a consequence of several factors. Firstly, notice
the amplification of quantum noise in the shadowed regions. This is noise which is caused
by the randomness in the exact number of photons hitting a particular photosensitive element
and is especially pronounced if the average number of photons is low i.e. if the corresponding
region is dark. In addition, self quotient image filtering increases quantization noise. In dark
image regions, relative brightness is not captured with good accuracy, as quantization is
coarser. Lastly, the severe illumination conditions used in the acquisition of many of our
images tend to result in the creation of artefacts in self quotient images. Specifically this
occurs at the boundaries of often sharp contrast between shadowed and well lit regions of
the face that are created in severe illuminations.

To substantiate our theoretical explanation of the relatively poor performance of the self
quotient image, we also performed an additional set of experiments, using only an “easy”
subset of data which constrains both the azimuth and the elevation of the dominant light
direction to ±20◦ deviation from the camera direction. The results are summarized in the
second row of Table 1. Unsurprisingly, higher recognition rates are achieved for all represen-
tations. What is interesting to observe is that in this experiment self quotient image performs
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much better than the high pass filtered appearance. While the error rate was previously in-
creased by 31% with contextual contrast normalization, it is now decreased by 43%, which
is a remarkable difference in behaviour. These results serve to illustrate why neither of the
two representations, the high pass filtered appearance or the self quotient image, are appro-
priate for recognition in extreme illumination conditions, motivating the ideas introduced in
the present paper (also see [2]).

We also investigated the performance attained using a simple binary edge map, consider-
ing its role in the derivation of the proposed representation. Evaluated both on the entire data
set and on the “easy” subset, the edge map outperformed both the high pass filter and the
quotient image. The effect was more pronounced in extreme illumination conditions. The
performance was improved further yet when we applied a Gaussian blur on the edge map,
thereby increasing the robustness of the representation to precise localization of edges and
registration errors. The additional improvement was particularly noticeable on the “easy”
data subset. This suggests that an edge map extracts rather discriminative, meaningful infor-
mation and that the majority of matching errors when this representation is employed under
mild illumination conditions comes precisely as a consequence of small misalignments. On
the other hand, the relatively poor absolute performance of the edge map in challenging
conditions reinforces our argument that the presence of cast shadows, saturated image re-
gions and noise is so substantial that a more complex and robust representation is needed for
accurate recognition.

Finally, we evaluated our gradient edge map representation. Both on the “easy” sub-
set and on the entire data corpus, the proposed representation achieved outstanding results,
matching flawlessly in the former case and with 0.8% error rate in the latter. This is by far
the best result reported in the literature to date. The best performing methods described pre-
viously which use only a single training image and a single probe image, evaluated on the
entire range of illuminations present in YaleB database achieve rates of 93–94% [8]. This
means that the error rate attained with the proposed representation is reduced approximately
eightfold. This exceptional performance of the gradient edge map representation is further
corroborated by the receiver-operator characteristic curves, computed across the entire YaleB
data set, shown in Figure 4(a). The characteristic curves of raw appearance, high pass filter
and self quotient image based approaches is rather poor, their relative ordering matching that
of their mean recognition rates discussed previously. On the same plot, the characteristic
curve of our representation is so close to the ideal curve, that it is difficult to distinguish with
a naked eye. Therefore in Figure 4(b) we also include a magnification of the salient region
near the point corresponding to the zero false positive and 100% true positive rate. From this
plot it can be seen that the corresponding equal error rate is approximately 0.8%. In a high
security setting, at 0.15% false positive rate, the true positive rate is at a very high 96%.

4 Conclusions
In this paper we introduced a novel gradient edge map representation for frontal face recog-
nition. Our approach was motivated by the limitations of relative image intensity based
representations widely used in the literature, but which we show are ineffective in extreme
illumination conditions. Instead, the proposed representation relies on the phase of gradi-
ent information near repeatably detectable image intensity edges which characterize salient
facial features. Repeatably detectable image intensity edges are extracted using a cascade
of processing steps, each of which seeks to harness further discriminative information or
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OGNJEN ARANDJELOVIĆ: GRADIENT EDGE MAP FOR FRONTAL FACE RECOGNITION 9

(a) (b)

Figure 4: (a) Receiver-operator characteristic curves achieved using different representa-
tions. (b) Magnified receiver-operator characteristic attained using the proposed representa-
tion near the point corresponding to the zero false positive and 100% true positive rate. The
proposed gradient edge map achieves nearly perfect performance, with the equal error rate
of 0.8%.

normalize for a particular source of extra-personal appearance variability. The effectiveness
of the proposed representation was demonstrated on the notoriously challenging YaleB data
set, which covers a wide range of illumination conditions, many of which are extreme (rear
lateral, overhead). Unlike most of the previous work we used only a single image per person
for training and a single probe image as test, and did not eliminate any of the images from
the evaluation. Our gradient edge map achieved outstanding results, incorrectly recognizing
in only 0.8% of the cases and exhibiting nearly perfect receiver-operator characteristic be-
haviour. This performance vastly exceeds that reported previously in the literature on this
data set and using the same evaluation methodology.

Our immediate future work will concentrate on extending the proposed method to deal
with varying pose. For example, this may be achievable by applying the gradient edge map
features on synthetically generated images of frontal faces.
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