Sparsity Potentials for Detecting Objects with the Hough Transform
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Hough transform based object detectors divide an object into a num-
ber of patches and combine them using a shape model. For efficient com-
bination of patches into the shape model, the individual patches are as-
sumed to be independent of one another. Although this independence
assumption is key for fast inference, it requires the individual patches to
have a high discriminative power in predicting the class and location of
objects. In this paper, we make the following two observations:

o the similarity in appearance of patches in a neighborhood of a cen-
tral patch exhibit different sparsity values when the central patch
appears on an object as opposed to a background region.

e the codebook entries associated with texture or simple edge pat-
terns are consistently less sparse in their neighborhood as opposed

to entries which are associated to more complex patterns (see Fig. 1).

Based on these observations, we argue that the sparsity of the appear-
ance of a patch in its neighborhood can be a very powerful measure to
increase the discriminative power of a local patch and incorporate it as a
sparsity potential for object detection.

(a)
Figure 1: The patches in an image exhibit different sparsity values. While
the self-similarity of a non-texture patch (a) to its neighboring patches
is low, the patch on the tree (b) is less sparse and much more similar
to its neighborhood. Base on this observation, we introduce a measure
which captures the sparseness of a patch within its neighborhood and
incorporate it as a “sparsity potential” for object detection.

(b)

‘We base our sparsity or distinctiveness measure on self-similarity. Let
us assume that we have a metric that measures the similarity of a patch
f; with all patches in its neighborhood, {f,|n € N7}, e.g. by Normalized
Cross Correlation as in Fig. 1. Further, we assume that the returned simi-
larity is normalized to be in [0, 1] with 1 representing the most similar and
0 the most dissimilar patch. In this case, one is getting a real valued self-
similarity vector ss; = (ss7,. .. 58] N"\) where each element ss,, records the
normalized similarity of f; to f;.

The sparsity of the self-similarity vector ss; can be measured in many
different ways, e.g., by using entropy or various vector norms. In this
work, we use the L1-norm,

llssilli =) |ssnl

neN’?

)

which is both simple and fast to calculate.
For detecting objects, we incorporate the sparsity measure by training
a classifier for each code-word and object class. For training the sparsity
classifiers, first a set of features on the validation set, both on objects as
well as background, are extracted and are assigned to one or more code-
book entries ®;. Given a neighborhood function A/ i, the sparsity measure
of every feature f; is calculated. Next, for each @; and class label c, these
sparsity measures are collected and used to learn a simple threshold 6 ¢, -
These thresholds are then used to estimate class probability p(c|w;, N )
as
p(clay) it lssilli < 6c.a,

plelwj,N7) < { )

0 otherwise,
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Figure 2: This figure evaluates the effect of the neighborhood size used for
calculating the sparsity on the accuracy of the detector. The performance
comparison of our Hough Forest baseline [1] with and without sparsity
measure potentials is shown. As can be seen, the proposed sparsity po-
tential improves the accuracy. The performance tends to increase with
the window size until it saturates at around 71 pixels, almost doubling the
average precision (AP) compared to the baseline.The sparsity potential is
calculated on a square neighborhood of every 16 x 16 patch.

where p(c|w;) is the class probability estimated at the codebook entry o;.
Using the sparsity measure as a single dimensional feature, the thresh-

olds are learned such as to separate the positive and negatives with the best

classification accuracy with zero false negatives on the training data.

The evaluation is carried out on the PASCAL VOC 2007 dataset.
Our experiments confirm the benefit of using the proposed sparsity po-
tential for object detection increase the mean average precision (mAP) of
our Hough transform baseline [1] from 14.82 to 20.68. Example Preci-
sion/Recall curves for some categories of the VOC’07 dataset is shown in
Fig. 3.

In the future, it would be interesting to use the sparsity potentials in a
multi-class setup to also discriminate classes from one another. Since the
self-similar patches tend to belong to the same label, it would be also in-
teresting to incorporate their sparsity as a higher order potential for image
segmentation.
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Figure 3: The precision recall curves for some categories of the PASCAL
VOC 2007. As can be seen, the proposed sparsity potentials substantially
improve the detection performance. The average precision (AP) is calcu-
lated by the integral under the curve.
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