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Abstract

Methods for human detection and localization typically use histograms of gradients
(HOG) and work well for aligned data with low variance. For methods based on HOG

despite the fact the higher resolution templates capture more details, their use does not
lead to a better performance, because even a small variance in the data could cause the
discriminative edges to fall into different neighbouring cells. To overcome these prob-
lems, Felzenszwalb et al. proposed a star-graph part based deformable model with a fixed
number of rigid parts, which could capture these variations in the data leading to state-of-
the-art results. Motivated by this work, we propose a latent deformable template model
with a locally affine deformation field, which allows for more general and more natural
deformations of the template while not over-fitting the data; and we also provide a novel
inference method for this kind of problem. This deformation model gives us a way to
measure the distances between training samples, and we show how this can be used to
cluster the problem into several modes, corresponding to different types of objects, view-
points or poses. Our method leads to a significant improvement over the state-of-the-art
with small computational overhead.

1 Introduction
Human detection is typically formulated as a problem where the objective is to find all the
people within an image and enclose each one of them by a tight bounding box. Dalal and
Triggs [4] introduced the histograms of oriented gradients (HOG) feature for this problem
over cells composing the bounding box, efficiently matching object shape with the learnt
rigid template of edge directions. This method was originally applied to pedestrian detection,
but it turned out to give good performance for a wide range of object classes with distinctive
shape. Intuitively, a higher dimensional template should capture more small details and
should lead to a better performance. However, even under small local deformations of the
data it is impossible to align the data properly and the discriminative edges often fall into the
neighbouring cell. To overcome this problem, Felzenszwalb et al. [8] proposed a star-graph
part based model (later generalized to a multi-layer hierarchy [3]) allowing a predetermined
number of rigid parts to change their relative location with respect to the centre of the object.
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Large intra-class variance was modelled by splitting training samples based on their aspect
ratio and training a classifier for each set of training samples independently. This procedure
works if the different aspect ratio corresponds to a different viewpoint, such as for example
for a car. However, it is not very suitable for human detection, where different human poses
often have the same aspect ratio and the method does not learn an independent model for
each one of them.

Motivated by this work, we propose a new latent variable SVM allowing for any deforma-
tions of the template, expressed in terms of a deformation field. Rather than restrict ourselves
to a star-graph model, we allow the template to deform according to a locally affine defor-
mation field. We propose tractable optimisation for learning parameters of the model and for
evaluation. Our deformation model can be seen as the generalisation of [18], which refines
the template beyond translation and scaling with an additional transformation selected from a
finite set of possible perturbations covering aspect ratio change and small in plane rotations.
We show how the deformation field could be used to measure the similarity of the training
samples and thus could be used to cluster the problem into several poses or viewpoints using
more suitable measure than the aspect ratio. Such clustering has already been used for the
pose estimation problem [12].

The only similar approach to ours, that tries to measure the similarities between ob-
jects by matching them using a deformation field, has been proposed for the detection re-
scoring [13] and the classification problem [5]. However, the optimisation of the uncon-
strained pairwise random field is computationally too heavy and can not be used for a sliding
window detector.

2 Previous Work

First we describe the formulation of Dalal and Triggs [4]. The linear support vector machine
(SVM) classifier response for a given image sub-window is based on histograms of oriented
gradients (HOG) evaluated on a regular grid of n = nx × ny (in general overlapping) cells,
where each cell is a rectangular region of a fixed size Sx × Sy centred at the point ci j =
[xi j,yi j]. Let h(ci j) ∈Rm be the corresponding histogram of gradients with m directions over
the cell, centred at the point ci j, and h(c) ∈ Rmn concatenated histograms over all cells. The
linear discriminant function takes the form :

H(c) = w∗ ·h(c)+b∗ =
nx

∑
i=1

ny

∑
j=1

m

∑
l=1

w∗
i jlhl(ci j)+b∗, (1)

where H(c)> 0 indicates a positive detection, negative otherwise. The weights w∗ and bias
b∗ are trained by solving the optimization problem using M training samples with ground
truth labels zk ∈ {−1,1} as:

(w∗,b∗) = arg min
(w,b)

λ ||w||2 +
M

∑
k=1

ξ k (2)

s.t. ∀k ∈ {1, ..,M} :
ξ k ≥ 0

ξ k ≥ 1− zk
(

w.h(ck)+b
)
,
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where h(ck) are the concatenated histograms of k-th training sample and λ is the regulari-
sation strength. Typically, data sets contain only positive bounding boxes and negative ones
are randomly sampled. An improvement over this approach can be gained by iteratively
bootstrapping the training set using the hard negatives obtained by the classifier from the
previous iteration [4, 19].

The rigid formulation has been extended [8] to a more flexible one with a fixed number
of rigid parts using Latent SVM, with the part locations as latent variables. The model is
trained by alternating between estimation of the locations of parts given the weight vectors
and estimating optimal weights and bias given the state of the latent variables.

3 Deformable Template with MRF Priors
In this work we propose a model that allows the deformation of an object using the deforma-
tion field d = [dx,dy] containing an optic flow like deformation parameters [dx

i j,d
y
i j] for each

cell centre. This can be thought of a set of latent variables (as in the Latent CRF). However,
the form of prior we shall choose will be much richer than in [8] and a generalisation in that
we will allow for a more general deformations of the template.

Formally, the deformation can be defined using a deformation function Dd(c) transform-
ing each cell centre relative to its size Sx ×Sy as :

Ddi j(ci j) = Ddi j([xi j,yi j]) = [xi j +dx
i jSx,yi j +dy

i jSy], (3)

where dx
i j and dy

i j are the deformations relative to the size of the cell. We restrict defor-
mations di j = [dx

i j,d
y
i j] to the interval L = (−dmax,dmax)× (−dmax,dmax) with discrete steps

(0.5 cell used in experiments). The deformation field d is treated as a set of latent variables
jointly estimated with the parameters (weights and bias) of the SVM classifier. To penalize
improbable deformations the regularisation term R(d) is introduced. The classifier for our
deformable template then takes the form :

H(c) = max
d

(
w∗ ·h(Dd(c))+b∗−R(d)

)
, (4)

where the regularisation term R(d) for the deformation field d takes the form of the pairwise
Markov Random Field (MRF) cost :

R(d) = θp ∑
(i j, f g)∈E

ψp(di j −d f g), (5)

where E is the set of pairs of neighbouring cells and ψp pairwise potential enforcing neigh-
bouring patches to take similar deformation. This kind of regularisation is typically used for
the optical flow problem. Experimentally the most successful pairwise potential for these
problems takes the form of quadratic truncated cost ψp(di j − d f g) = min(||di j − d f g||2,T ),
where T is the truncation parameter.

In the standard optical flow problem we are typically matching the same object between
images, and this kind of regularisation is sufficient and not prone to over-fitting. However,
in the detection problem we match two different things – an object and a template. A too
low pairwise weight θp could lead to over-fitting making an object "fall apart". On the other
hard a too high pairwise weight makes deformations impossible. Experimentally, the gap
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Non-deformed Stretching in x Stretching in y Globally affine

Mapping (x,y)→ (x+ f (y),y) Mapping (x,y)→ (x,y+ f (x)) Locally affine Unconstrained

Figure 1: Expressive power of the locally affine deformation field. As shown in the figure, the lo-
cally affine constraints allow for stretching or mapping of the template in both axes, global affine
transformation of the template or the combination of all of them resulting in the general locally affine
transformation, in which any 2×2 neighbouring cells transform into a parallelogram. A typical exam-
ple of a locally affine transformation in practice is the deformation field used in the Microsoft Windows
logo, which can be composed of the mapping of the x axis with the global affine transformation. For
comparison, the example of a general unconstrained transformation of the template is shown in the last
image.

between these two cases is very small and often θp needs to be tuned per instance to get
desired output.

One way to deal with the problem of matching of an object to an object in the database
was proposed in [14] using the flow of the more discriminant dense SIFT [15]features. Such
approach is computationally too heavy for the sliding window detection. The way we ex-
plore here, is to keep θp low, but enforce certain higher order structures in the deformation
field. One such useful type of structure is to constrain the motion to be a local affine de-
formation field; this means each 2× 2 neighbouring cells can deform into a parallelogram.
More formally we will call a deformation field locally affine and write d ∈ A if:

∀i j ∈ {1, ..,nx −1}×{1, ..,ny −1} : di, j +di+1, j+1 = di+1, j +di, j+1. (6)

where di, j = di j. Locally affine deformation fields allow for a large variety of stretching or
bending while keeping its structure consistent, forcing the template not to fall apart. Exam-
ples of locally affine deformation of the regular template describing the expressive power
of such transformation are shown in the Figure 1. As we show later, the locally affine con-
straints allow for a novel fast inference method.

The latent SVM optimisation problem for learning the weights w∗ and the bias b∗ be-
comes:

(w∗,b∗) = arg min
(w,b)

λ ||w||2 +
M

∑
k=1

ξ k (7)

s.t. ∀k ∈ {1, ..,M} :
ξ k ≥ 0

ξ k ≥ 1− zk max
d∈A

(
w ·h(Dd(ck))+b−R(d)

)
.
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4 Learning the Parameters of the Deformable Model
The optimisation problem (7) for the training stage is non-convex. However, we can follow
the same approach as [8] and iteratively estimate the weight vector w with the bias b, and the
deformation field d for each training sample.

First, the problem of finding the optimal weight vector w and bias b, given the deforma-
tion fields d̂k for each training example becomes:

(w∗,b∗) = arg min
(w,b)

λw||w||2 +
M

∑
k=1

ξ k (8)

s.t. ∀k ∈ {1, ..,M} :
ξ k ≥ 0

ξ k ≥ 1− zk
(

w ·h(Dd̂k
(ck))+b−R(d̂k)

)
and can be solved using any standard SVM algorithms [1, 11, 17]. The problem of finding the
optimal deformation field d∗ for each training example given current weights ŵ becomes:

dk∗ = arg max
dk∈A

(
ŵ ·h(Ddk

(ck))−R(dk)
)

(9)

= arg min
dk∈A

∑
(i j, f g)∈E

ψp(dk
i j −dk

f g)− ŵ ·h(Ddk
(ck)).

The last term can be decomposed into the sum of the independent functions of deformations
for each cell dk

i j as:

ŵ ·h(Ddk
(ck)) =

nx

∑
i=1

ny

∑
j=1

m

∑
l=1

ŵi jlhl(D
dk

i j(ck
i j)). (10)

By defining ψu(dk
i j) =−∑m

l=1 ŵi jlhl(D
dk

i j(ck
i j)) the optimisation procedure to find the optimal

deformation field becomes :

dk∗ = arg min
dk∈A

nx

∑
i=1

ny

∑
j=1

ψu(dk
i j)+ ∑

(i j, f g)∈E
ψp(dk

i j −dk
f g), (11)

which is the max-a-posteriori (MAP) estimation of the pairwise MRF problem with |Lx||Ly|
labels under the additional locally affine deformation field constraints. Without these con-
straints and with convex pairwise function ψp(·) the problem would be approximately solv-
able by estimating dx and dy iteratively using graph cut [2] with Ishikawa’s graph construc-
tion [10]. However, in practice it would be computationally too heavy for a sliding window
approach even with a linear pairwise cost as used in [5]. Instead, we propose an alterna-
tive computationally very efficient approach, which solves the problem under the additional
locally affine deformation field constraints for any form of pairwise costs.

We start with the observation that the deformation of all cells in the first row and in
the first column of the deformation field fully determines the deformation of any other cell.
Intuitively we can fill the deformations inductively as di, j = di−1, j+di, j−1−di−1, j−1. Locally
affine constraints can be satisfied for any deformations of the cells in the first row and in the
first column. Thus, any locally affine deformation field can be reached by two moves – the
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first in which we move each row j by a deformation ∆rd j = (∆rdx
j ,∆rdy

j) and the second in
which we move each column i by a deformation ∆cdi = (∆cdx

i ,∆cdy
i ). Trivially, both of these

moves do not break the local affinity property and can lead to any deformation of the cells in
the first row and in the first column and thus to any arbitrary locally affine deformation field.
Formally, the transformation function for the row move is defined as:

T ∆rd(di j) = di j +∆rd j,∀i j ∈ {1, ..,nx}×{1, ..,ny}. (12)

The optimisation problem to find the optimal row move is:

∆rd∗ = argmin
∆rd

ny

∑
j=1

nx

∑
i=1

ψu(dk
i j +∆rd j)+ ∑

(i j, f g)∈E
ψp(dk

i j −dk
f g +∆rd j −∆rdg). (13)

Pairwise costs between cells in the same row do not change. Thus, by defining ψr
u(∆rd j) =

∑nx
i=1 ψu(dk

i j +∆rd j) and ψr
p(∆rd j,∆rdg) = ∑(i j, f g)∈E, j ̸=g ψp(dk

i j −dk
f g +∆rd j −∆rdg) the op-

timisation problem becomes:

∆rd∗ = argmin
∆rd

ny

∑
j=1

ψr
u(∆

rd j)+ ∑
( j,g)∈Er

ψr
p(∆

rd j,∆rdg), (14)

where E r is the set of pairs of the neighbouring rows. For a 4- or an 8- neighbourhood of E
this problem is a simple MRF problem over the chain of the ny variables and can be solved
very efficiently using dynamic programming. Equivalently, the transformation function for
the column move is defined as:

T ∆cd(di j) = di j +∆cdi,∀i j ∈ {1, ..,nx}×{1, ..,ny}. (15)

The optimisation problem to find the optimal column move is:

∆cd∗ = argmin
∆cd

nx

∑
i=1

ny

∑
j=1

ψu(dk
i j +∆cdi)+ ∑

(i j, f g)∈E
ψp(dk

i j −dk
f g +∆cdi −∆cd f ). (16)

By defining ψc
u(∆cdi) = ∑ny

j=1 ψu(dk
i j +∆cdi) and ψc

p(∆cdi,∆cd f ) = ∑(i j, f g)∈E,i ̸= f ψp(dk
i j −

dk
f g +∆cdi −∆cd f ) the optimisation problem becomes:

∆cd∗ = argmin
∆cd

nx

∑
i=1

ψc
u(∆

cdi)+ ∑
(i, f )∈Ec

ψc
p(∆

cdi,∆cd f ), (17)

where Ec is the set of pairs of the neighbouring columns. Again, for a 4- or an 8- neigh-
bourhood of E this problem can be solved using dynamic programming. The local optimum
of the locally affine deformation field d is found by iterating between the row and column
moves. Experimentally, the local minimum is typically found after 2 iterations. In case we
want to speed up the estimation of the deformation field we can split each of the row and
column moves into two moves for each of the coordinate dx and dy. The row moves in dy

and the column moves in dx correspond to the stretching or shrinking of the template, the
row moves in dx and the column moves in dy to the bending on the template.

The optimisation problem during the test phase is equivalent to the estimation of the
optimal deformation field in the training phase:

H(c) = max
d∈A

(
w∗ ·h(Dd(c))+b∗−R(d)

)
, (18)

and solved in the same manner.
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5 Learning of Different Viewpoints or Poses
Typically, different viewpoints are modelled by splitting the positive samples based on the
aspect ratio and trained independently for each aspect ratio [8]. However, this approach
does not model different poses with similar bounding boxes independently. We can take an
advantage of our deformation field model and cluster the problem into subproblems based
on the similarity of training samples.

We start by defining the non-commutative similarity measure S∗k→p between two in-
stances k and p as the scalar product between the reference feature vector of the instance
p and the feature vector of the deformed instance k penalized by the deformation field regu-
larisation R(d) as:

S∗k→p = max
d∈A

(
h(cp) ·h(Dd(ck))−R(d)

)
. (19)

If the foreground-background masks are given, then to align the samples we can either re-
place the histograms of gradients with the foreground/background ratio or by the multiplica-
tion of them. The M×M similarity matrix S is then filled with the values:

Skp = max(S∗k→p,S
∗
mirror(k)→p), (20)

where mirror(k) is the mirrored instance k. Because the feature vector is non-negative and
R(0) = 0, the values in the similarity matrix can be any arbitrary non-negative numbers.
In case the instances k and p differ too much in the aspect ratio (by 25% in experiments),
then the similarity measure Skp = 0. We formulate the problem of clustering the instances
into T clusters as a search for the reference subset P of training samples, such that the
∑M

k=1 maxp∈P Skp is maximised. We solve this problem similarly to the standard k-medoid
approach, where we randomly pick the set of centres P and then iteratively find the most
similar centre for each training sample and using brute force find the centre in each cluster
so that it maximises the cost function. Because the number of training samples is typically
not huge, this procedure is very fast. To avoid very bad local optima the first iteration is
done using twice the number of centres and then the desired number of largest clusters is
kept for the next iterations. This procedure gives us not only the centres of the clusters and
the membership of each training sample, but also their initial latent deformation field and the
latent variable deciding whether we mirror the sample or not.

6 Experiments
Most existing human detection data sets typically consist of fully visible pedestrians [4] with
low variability of poses. In such cases it is optimal to use just one model, which successfully
captures all common poses in the street scene scenario. Thus, we tested our method on the
more challenging Buffy data set of [9], which consists of images with large variety of poses
and truncations by the edge of the image, which makes it suitable for our clustering method.
The buffy data set consists of 748 images from episodes s5e2 – s5e6, with episode s5e3 used
for training, episode s5e4 for validation and episodes s5e2, s5e5 and s5e6 for testing. Human
detection, using an upper body detector, is typically used there as the preprocessing step for
the pose estimation [6, 9, 16].

The training samples are clustered into 10 models. Clustering of the training samples
into multiple models together with their corresponding HOG template deformed by the latent
deformation field is shown in the Figure 2. The different clusters typically correspond to not



8 LADICKÝ et al.: LATENT SVMS FOR HUMAN DETECTION WITH LADF

Figure 2: Clustering of the training samples into several models. Instances in the same row belong
to the same cluster. Instances shown correspond to the largest four (out of ten) clusters. Overlaid on
each training sample is the trained HOG template for the corresponding model deformed by the locally
affine deformation field estimated as the set of latent variables. In the case of an optimal match with
the mirrored template, the image is shown mirrored. As seen from the figure, the clusters typically
correspond to not only different aspect ratios. but also to different poses. The first row is the cluster
containing instances with a relatively large head compared to their shoulders (typically women with
long hair). The second cluster contains fully visible humans standing upright. The third cluster contains
humans holding their hips and the fourth one humans with large shoulders (typically men) comparing
to the size of the head, slightly bent so the head is to the left side of the template.

only different aspect ratio but also to different poses. The HOG templates are trained using 4
bootstrapping iterations. During the evaluation a sliding window is initialised at every 3×3
cell. The resulting bounding boxes are obtained as a bounding box surrounding the cells in
the corners of the template. Highly overlapping boxes are suppressed using standard non-
maxima suppression. Several local optima should correspond to the different instances of
object of interest. Qualitative results are shown in the Figure 3. The detection is considered
as correct if the intersection vs union measure [7] is above 0.5. The performance is measured
as the average precision(AP) – area under the precision vs recall curve [7]. We compared
our deformable LADF detector (10 models) with the rigid HOG detector – root filter of [8]
clustered using aspect ratio (3 models), the state-of-the-art part-based detector [8] clustered
using aspect ratio (3 models), the rigid HOG detector with K-medoid clustering (10 models)
and the rigid HOG detector with LADF training and clustering (10 models). The results of the
first two detectors are obtained using the publicly available code of [8], the results of the other
detectors are obtained using our own code. Our LADF detector significantly outperformed
existing approaches. The results of the HOG detector using the models trained using LADF
training suggest, that both the alignment and the clustering of the training samples play
crucial role to achieve good performance. Quantitative comparison in terms of performance,
training and test time is shown in the figure 4.

7 Conclusions

In this paper we propose a novel deformable human detector with a latent locally affine de-
formation field. We show how the classifier can be learnt and its deformation field efficiently
estimated. We also show how the deformation field could be used to cluster the training
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Figure 3: Typical results on the Buffy data set. Positive detections are overlaid with the learnt HOG

template of the corresponding model, deformed by the deformation field. Large majority of the persons
are correctly detected. Typical mistakes include missed detections of hard instances (A3, A4, C3, E4),
false positive detections (A5, B2), detection with insufficient overlap with the ground truth (B3) or
detection by a wrong model with a wrong truncation (A3).

Method AP Training
time

Test
time

HOG detector 47.65% 1h 1.4s

Part-based detector 72.38% 19.5h 6s

HOG detector with K-Medoid Clustering 69.10% 1.5h 4.7s

HOG detector with LADF Clustering 73.78% 2.5h 4.7s

LADF Detector 76.03% 2.5h 50s

Figure 4: Quantitative comparison of our deformable detector with the rigid HOG detector - root
filter of [8] clustered using aspect ratio (3 models), the state-of-the-art part-based detector [8] clustered
using aspect ratio (3 models), the rigid HOG detector with K-medoid clustering (10 models), the rigid
HOG detector with LADF training and clustering (10 models) and the full LADF detector (10 models).
On the left side we show the precision vs recall curves of all these 4 methods and on the right side a
comparison in terms of average precision - AP, training and test time.

samples based on their pose or viewpoint. We tested the algorithm on the challenging Buffy
data set and showed promising results. We assume, our random field formulation with the lo-
cally affine constraints could be used in the future for other computer vision tasks, where the
warping of one object into another is desired, such as tracking or optical flow estimation [14].

Acknowledgements. We are grateful for financial support from ERC grant VisRec no.
228180.



10 LADICKÝ et al.: LATENT SVMS FOR HUMAN DETECTION WITH LADF

References
[1] A. Bordes, L. Bottou, and P. Gallinari. SGD-QN: Careful quasi-newton stochastic

gradient descent. JMLR, 2009.

[2] Y. Boykov and V. Kolmogorov. An Experimental Comparison of Min-Cut/Max-Flow
Algorithms for Energy Minimization in Vision. PAMI, 2004.

[3] Y. Chen, L. Zhu, and A. L. Yuille. Active mask hierarchies for object detection. In
ECCV, 2010.

[4] N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. In
CVPR, 2005.

[5] O. Duchenne, A. Joulin, and J. Ponce. A graph-matching kernel for object categoriza-
tion. In ICCV, 2011.

[6] M. Eichner and V. Ferrari. Better appearance models for pictorial structures. In BMVC,
2009.

[7] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman. The
PASCAL Visual Object Classes Challenge (VOC2011) Results. http://www.pascal-
network.org/challenges/VOC/voc2011/workshop/index.html, 2011.

[8] P. F. Felzenszwalb, D. McAllester, and D. Ramanan. A discriminatively trained, mul-
tiscale, deformable part model. In CVPR, 2008.

[9] V. Ferrari, M. Marin-Jimenez, and A. Zisserman. Progressive search space reduction
for human pose estimation. In CVPR, 2008.

[10] H. Ishikawa. Exact optimization for markov random fields with convex priors. PAMI,
2003.

[11] T. Joachims. Making large-scale SVM learning practical. In Advances in Kernel Meth-
ods - Support Vector Learning. MIT Press, 1999.

[12] S. Johnson and M. Everingham. Clustered pose and nonlinear appearance models for
human pose estimation. In BMVC, 2010.

[13] L. Ladicky. Global structured models towards scene understanding. PhD thesis, Oxford
Brookes University, 2011.

[14] C. Liu, J. Yuen, A. Torralba, J. Sivic, and W. T. Freeman. Sift flow: Dense correspon-
dence across different scenes. In ECCV, 2008.

[15] David G. Lowe. Distinctive image features from scale-invariant keypoints. Interna-
tional Journal of Computer Vision, 2004.

[16] B. Sapp, A. Toshev, and B. Taskar. Cascaded models for articulated pose estimation.
In ECCV, 2010.

[17] S. Shalev-Shwartz, Y. Singer, and N. Srebro. Pegasos: Primal estimated sub-gradient
solver for svm. In ICML, 2007.



LADICKÝ et al.: LATENT SVMS FOR HUMAN DETECTION WITH LADF 11

[18] A. Vedaldi and A. Zisserman. Structured output regression for detection with partial
truncation. In NIPS, 2009.

[19] P. A. Viola and M. J. Jones. Robust real-time face detection. IJCV, 2004.


