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Human detection is typically formulated as a problem, where the objec-
tive is to find all the people within an image and enclose each one of them
by a tight bounding box. Dalal and Triggs [1] introduced the histograms
of oriented gradients (HOG) feature for this problem over cells compos-
ing the bounding box, efficiently matching object shape with the learnt
rigid template of edge directions. This method was originally applied
to pedestrian detection, but it turned out to give good performance for a
wide range of object classes with distinctive shape. Intuitively, a higher
dimensional template should capture more small details and should lead
to a better performance. However, even under small local deformations of
the data it is impossible to align the data properly and the discriminative
edges often fall into the neighbouring cell. To overcome this problem,
Felzenszwalb et al. [2] proposed a star-graph part based model allowing a
predetermined number of rigid parts to change their relative location with
respect to the centre of the object. Large intra-class variance was mod-
elled by splitting training samples based on their aspect ratio and training
a classifier for each set of training samples independently. This procedure
works if the different aspect ratio corresponds to a different viewpoint,
such as for example for a car. However, it is not very suitable for human
detection, where different human poses often have the same aspect ratio
and the method does not learn an independent model for each one of them.

Motivated by this work, we propose a new latent variable SVM allow-
ing for any deformations of the template, expressed in terms of a deforma-
tion field. Rather than restrict ourselves to a star-graph model, we allow
the template to deform according to a locally affine deformation field.

The classifier for our deformable template then takes the form :

H(c) = max
d∈A

(
w∗ ·h(Dd(c))+b∗−R(d)

)
, (1)

where c is the set of cells, h(Dd(c)) are the histograms of oriented gra-
dients on the template deformed by the deformation field d, R(d) is the
regularisation cost taking the form of the pairwise Markov Random Field
(MRF) and A is the set of locally affine deformation fields 1, in which any
2×2 neighbouring cells transform into a parallelogram.

The latent SVM optimisation problem for learning the weights w∗ and
the bias b∗ becomes:

(w∗,b∗) = arg min
(w,b)

λ ||w||2 +
M

∑
k=1

ξ k (2)

s.t. ∀k ∈ {1, ..,M} :

ξ k ≥ 0

ξ k ≥ 1− zk max
d∈A

(
w ·h(Dd(ck))+b−R(d)

)
,

where M is the set of training samples and zk ∈ {−1,1} is the label of
the k-th training sample. This problem is non-convex, however, we can
follow the same approach as [2] and iteratively estimate the weight vector
w with the bias b, and the deformation field d for each training sample.

The problem of finding the optimal weight vector w and bias b given
estimated deformation fields for each training sample is a standard SVM

problem and can be solved with any standard SVM algorithm. The prob-
lem of finding the optimal deformation field given weight vector is the
max-a-posteriori (MAP) estimation of the pairwise MRF problem under
the additional locally affine deformation field constraints. We start with
the observation that the deformation of all cells in the first row and in the
first column of the deformation field fully determines the deformation of
any other cell. Locally affine constraints can be satisfied for any deforma-
tions of the cells in the first row and in the first column. Thus, any locally
affine deformation field can be reached by two moves - the first in which
we move each row j by a deformation ∆rd j = (∆rdx

j ,∆
rdy

j ) and the second
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Figure 1: Expressive power of the locally affine deformation field. The locally
affine constraints allow for stretching or mapping of the template in both axes,
global affine transformation of the template or the combination of all of them re-
sulting in the general locally affine transformation, in which any 2×2 neighbouring
cells transform into a parallelogram.

Figure 2: Typical results on the Buffy data set. Positive detections are overlaid
with the learnt HOG template of the corresponding model, deformed by the defor-
mation field.

in which we move each column i by a deformation ∆cdi = (∆cdx
i ,∆

cdy
i ).

Trivially, both of these moves do not break the local affinity property and
can lead to any deformation of the cells in the first row and in the first
column and thus to any arbitrary locally affine deformation field. Both of
these subproblems can be solved exactly using dynamic programming.

Typically, different viewpoints are modelled by splitting the positive
samples based on the aspect ratio and trained independently for each as-
pect ratio. However, this approach could not model different poses with
similar bounding boxes independently and the star-graph model (or alter-
natively our locally affine deformation field) could not capture this kind of
deformations. We can take an advantage of our deformation field model
and cluster the problem into subproblems based on the similarity of train-
ing samples, defined as their scalar product, regularised by the MRF cost
of the deformation field which transforms one training sample to another.

We tested our method on the more challenging Buffy data set of [3],
which consists of images with large variety of poses and truncations by the
edge of the image, which makes it suitable for our clustering method. Our
method significantly outperformed other state-of-the-art approaches [1,
2]. We assume, our locally affine deformation field formulation could be
used in the future for other computer vision tasks, such as tracking or
optical flow estimation.

[1] N. Dalal and B. Triggs. Histograms of oriented gradients for human
detection. In CVPR, 2005.

[2] P. F. Felzenszwalb, D. McAllester, and D. Ramanan. A discrimina-
tively trained, multiscale, deformable part model. In CVPR, 2008.

[3] V. Ferrari, M. Marin-Jimenez, and A. Zisserman. Progressive search
space reduction for human pose estimation. In CVPR, 2008.


