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Abstract

We consider the problem of detection and tracking of multiple people in crowded
street scenes. State-of-the-art methods perform well in scenes with relatively few peo-
ple, but are severely challenged by scenes with many subjects that partially occlude each
other. This limitation is due to the fact that current people detectors fail when persons are
strongly occluded. We observe that typical occlusions are due to overlaps between people
and propose a people detector tailored to various occlusion levels. Instead of treating par-
tial occlusions as distractions, we leverage the fact that person/person occlusions result
in very characteristic appearance patterns that can help to improve detection results. We
demonstrate the performance of our occlusion-aware person detector on a new dataset
of people with controlled but severe levels of occlusion and on two challenging publicly
available benchmarks outperforming single person detectors in each case.

1 Introduction
Single people detectors such as the powerful deformable part models (DPM, [10]) have
shown promising results on challenging datasets. However, it is well known that current
detectors fail to robustly detect people in the presence of significant partial occlusions. In
fact, as we analyze in this paper, the DPM detector starts to break already at about 20%
of occlusion and beyond 40% of occlusion the detection of occluded people becomes mere
chance. Several methods, i.e. tracking and 3D scene reasoning approaches, have been pro-
posed to track people even in the presence of long-term occlusions. While these approaches
allow to reason across potentially long-term and full occlusions they still require that each
person is sufficiently visible at least for a certain number of frames. In many real scenes
however, e.g. when people walk side-by-side across a pedestrian crossing (see Fig. 1), a
significant number of people will be occluded by 50% and more for the entire sequence.

To address this problem this paper makes three main contributions. First we propose a
new double-person detector that allows to predict bounding boxes of two people even when
they occlude each other by 50% or more, and propose a new training method for this de-
tector. This approach outperforms single-person detectors by a large margin in the presence
of significant partial occlusions (Sec. 3). Second, we propose a joint person detector, that is
jointly trained to detect single- as well as two-people in the presence of occlusions. This joint
detector achieves state-of-the-art performance on challenging and realistic datasets (Sec. 4).
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Figure 1: Detection results at equal error rate obtained with the approach of [4] (top) and our
joint detector (bottom) on the TUD-Crossing [1] dataset. False-positive detections are shown
in red and missing detections in green. One of the two bounding boxes predicted from the
two-person detection is shown with the dotted line.

Last, we integrate the above joint model into a tracking approach to show its potential for
people detection and tracking (Sec. 5).

2 Related Work
Recent methods to track people [3, 6, 11, 18] employ people detectors to generate initial
tracking hypotheses, and often include elaborate strategies to link people tracks across oc-
clusion events. However, they typically fail to track people that remain significantly occluded
for the entire sequence. To overcome this limitation we propose a people detection approach
that can detect and predict the position of even severely occluded people. State-of-the-art
approaches to people detection [7, 10] are able to reliably detect people under a variety of
imaging conditions, people poses, and appearance. While being effective when people are
fully visible, their performance degrades when people become partially occluded. Various
remedies have been proposed, including a combination of multiple detection components
[10], large number of part detectors (Poselets) [5], and careful reasoning about association
of image evidence to detection hypotheses [4, 12, 16]. [12] proposed an approach that first
aggregates evidence from local image features into a probabilistic figure-ground segmen-
tation and then relies on an MDL formulation to assign foreground regions to detection
hypotheses. [4] proposed a probabilistic formulation of the generalized Hough transform
that prevents association of the same image evidence to multiple person hypotheses. These
approaches treat partial occlusion as nuisance and perform decisions based on the image evi-
dence that corresponds to the visible part of the person. This makes them unreliable in cases
of severe occlusions (i.e. more than 50% of the person occluded). Several works have aimed
at improving such weak detections using information from additional sensing modalities [8]
or by joint reasoning about people hypotheses and 3D scene layout [17]. In [17], a bank of
partial people detectors is used to generate initial proposals that are refined based on the 3D
scene layout and temporal reasoning.

Here, we explore an alternative strategy, observing that in crowded street scenes most oc-
clusions happen due to overlaps between people. Instead of using evidence from individual
people that becomes unreliable in cases of severe occlusion, we consider the joint evidence
of both people. This is possible since overlapping people result in characteristic appearance
patterns that are otherwise uncommon. Our approach is related to the “visual phrases” ap-
proach [9] in that we train a joint detector for the combination of two object instances. Our
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(a) (b) (c) (d)
Figure 2: Procedure to synthetically generate training images for our double-person detector.
(a) background person, (b) foreground person, (c) foreground person map, (d) generated
synthetic training image.

approach builds on the state-of-the-art people detector of [10], which we extend in two ways.
First, we propose a double-person detector that simultaneously detects two people occluding
each other and second, we propose a joint detector that can detect both one as well as two
people due to joint training. To capture typical appearance patterns of people occluding each
other we automatically generate a dataset of training images with controlled and varying de-
grees of occlusion. In this respect our work is also related to a recent literature that combines
real and artificially generated images to train people detectors [13, 14].

3 Double-Person Detector

Our double-person detector builds on the DPM approach [10] arguably one of the most
powerful object detectors today. The key concept of our double-person model is that per-
son/person occlusion patterns are explicitly used and trained to detect the presence of two
people rather than to treat these occlusions as distractions or nuisance as it is typically done.
Specifically, our double-person detector shares the deformable parts across two people which
belong to the same (two-person) root filter. In that way localizing one person facilitates the
localization of the counterpart in the presence of severe occlusions and the deformable parts
allow to improve the localization accuracy of both people using the above mentioned oc-
clusion patterns whenever appropriate. For this we build on the DPM framework to detect
the presence of two people and to predict the bounding boxes of both people, the occlud-
ing person as well as the occluded person. The latent SVM algorithm used to train DPMs
is susceptible to local minima. Therefore, proper initialization is crucial, as discussed be-
low. For training, we synthetically generate two-people samples based on the TUD training
data [1]. The synthetic images are ideal for training as they come with accurate occlusion-
level estimates. We demonstrate experimentally that our double-person detector significantly
outperforms a single-person detector in the presence of severe occlusions.
Double-person detector model: In full analogy to DPMs, our double-person detector uses
a mixture of components. Each component is a star model consisting of a root filter defin-
ing the coarse location of two people and n deformable part filters covering representative
parts and occlusion patterns of the two people. The vector of latent variables is given by
z = (c, p0, . . . , pn) with c denoting the mixture component and pi specifies the part’s image
position and feature pyramid level li. The score of a double-person hypothesis is obtained by
the score of each filter at the latent position pi (unary potentials) minus the deformation cost
between root position and part position (pairwise potentials). As in [10], the un-normalized
score of a double-person hypothesis is defined by 〈β ,Ψ(x,z)〉, where vector β is a concatena-
tion of the root and all part filters and the deformation parameters, and Ψ(x,z) is the stacked
HOG features and part displacement features of sample x. Ψ(x,z) is zero except for a certain
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(a) (b) (c) (d) (e) (f)
Figure 3: Examples of synthetically generated training images. From (a) to (f), levels of
occlusion are gradually increased.

component c. Therefore, we obtain the construction 〈β ,Ψ(x,z)〉 = 〈βc,ψc(x,z)〉. Detection
in the test image is done by maximizing over the latent variables z: argmax(z)〈β ,Ψ(x,z)〉.
Model training: Given a set of training examples D = (〈x1,y1〉, . . . ,〈xN ,yN〉), with yi ∈
{−1,1}, we learn the model parameters β using latent SVM [10]. This involves iteratively
solving the quadratic program:

min
β ,ξ≥0

1
2
‖β‖2 +C Σ

N
i=1ξi sb.t. yi〈β ,Ψ(xi,z)〉 ≥ 1−ξi ξi ≥ 0, (1)

and optimizing for the values of latent parameters z. We solve the quadratic program with
the stochastic gradient descent and employ data-mining of hard-negative examples after each
optimization round as proposed in [10].
Initialization: The objective function of the latent SVM is non-convex, which makes the
training algorithm susceptible to local minima. Therefore, a good initialization of the model
components is crucial for good performance. Instead of relying on the bounding box aspect
ratio as in [10], we initialize our model using different occlusion levels. This follows the
intuition that degree of occlusion is one of the major sources of the appearance variability,
and we capture it by different components. Other sources of appearance variability such
as poses of people and varying clothing are then captured by displacement and appearance
parameters of each component. In the experiments reported below we rely on the three
component double-person model. The components are initialized with the occlusion levels
0%–25%, 25%–55%, and 55%–85%.
Bounding box predictions: Given a double-person detection we predict the bounding boxes
of individual people using a linear regression. The location of each bounding box is modelled
as

Bi = gi(z)T
αc + εi, (2)

where Bi is the predicted bounding box for a detection i, c is the index of the DPM component
that generated the detection, and gi(z) is a 2 ∗ n+ 3 dimensional vector that is constructed
by the upper left corners of the root filter and the n part filters as well as the width of the
root filter. εi is a Gaussian noise that models deviations between the predicted and observed
location of the bounding box.

The regression coefficients αc are estimated from all positive examples of the compo-
nent c. For each of the model components we estimate two separate regression models that
correspond to each of the persons in the double-person detection. This procedure allows to
accurately localize both people despite severe occlusions as can be seen e.g. in Fig. 5.
Training data generation: As it is difficult to obtain sufficient training data for the different
occlusion levels of our double-person detector we synthetically generate it. Fig. 2 illustrates
this process. For each person we first extract the silhouette based on the annotated fore-
ground person map. Next, another single-person image is selected arbitrarily and combined
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Figure 4: Detection performance of single- and double-person detectors for different occlu-
sion levels.

Figure 5: Qualitative comparison of single- and double-person detectors with occlusion.

with the extracted silhouettes. In order to generate a double-person training dataset we ran-
domly select background images, 2D positions and scale parameters. Each synthetic image
provides an accurate occlusion ratio estimated from the two persons’ silhouettes. For the
experiments reported below we generate 1,300 double-person training images from the 400
TUD training images [1]. For the synthetic dataset we uniformly sample occlusion levels
between 0% and 85%, and scale factors between 0.9 and 1.1.
Experimental study: In order to explicitly compare single-person and double-person detec-
tor performance for person/person occlusion scenarios, we captured several video sequences
and constructed a new double-person dataset (850 images) where the images are categorized
by different occlusion levels. The occlusion level is estimated from 2D truncated quadrics
which are constructed from stick-man annotation1 .

Single-person detector: Fig. 4(a) shows the performance of the standard DPM single-
person detector on our double-person dataset. In case of little partial occlusion (red curve,
below 5%), the single-person detector obtains good performance both in terms of recall (up
to 90% recall) as well as a high precision. However, the single person detector already misses
many people when the occlusion level is increased up to 15% (blue curve, maximal recall
below 80%), and further decreases in the presence of more occlusion. When the occlusion
level is 35% or more, the achieved recall is only slightly above 50% clearly indicating that
in most cases only one of the two people is correctly detected.

Double-person detector: Fig. 4(b) shows the performance of our proposed double-person
detector. For almost all occlusion levels the detector allows to reach 100% recall which is
clearly a significant improvement over the single person detector. Interestingly, for the low-
est occlusion level (red curve, up to 5%) we loose some recall which can be explained by

1The training and test datasets are available at www.d2.mpi-inf.mpg.de/datasets
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the difficulty to differentiate a single person that does not occlude a second person from the
case that a person occludes a second person significantly (e.g. 80%) (see for an example of
80% occlusion Fig. 5). At the same time the precision is very high for all but the highest
occlusion level (green line, up to 85%). From this experiment we conclude that our double-
person detector is much more robust than the single-person detector and obtains excellent
performance both in terms of recall and precision even for the heavy occlusion cases. Single
person localization (bounding boxes prediction) is not a trivial task especially for intermedi-
ate occlusion level cases (30% ∼ 60%), since we observe fair evidence from both persons,
which can be distracting for single bounding box localization. However, the results shows
that our double-person detector accurately and robustly predicts the single bounding box for
the above mentioned case as well. Fig. 5 shows comparative qualitative results. For the same
test examples, our double-person detector correctly detects the position of two persons and
predicts their respective bounding box with high accuracy.

4 Multi-Person Detection
The previous section has shown that our double-person detector can indeed outperform a
single person detector when people occlude each other by 25% or more. The employed
dataset however was somewhat idealistic as it contained exactly two people that occluded
each other at various degrees. In realistic datasets we will have both single people that
are fully visible and two and more people that occlude each other. This section therefore
proposes a detector that combines both single and two-person detectors into a single model
that is jointly trained. The model is again built upon the DPM-approach where the role of
the different components is now to differentiate both between single and two people as well
as between different occlusion levels among two people.

4.1 Joint Person Detector
We jointly train single- and double-person detectors by representing them as different com-
ponents of the DPM. We allocate 3 components for the double detector and 3 components
for the single-person detector, which after mirroring results in a 12 component DPM model.
Similarly to Sec. 3 we initialize the double-person components with training examples cor-
responding to gradually increasing levels of occlusion. For the single-detector components
we rely on the standard initialization based on the bounding box aspect ratio. During learn-
ing we allow training examples to be reassigned to other components of the DPM model,
but prevent assignments of 2-person examples to 1-person components and vise versa. We
found this to be important to improve detection of two people in cases of particularly strong
occlusion, that are otherwise often incorrectly handled by the single-person components.
Training data: We train our joint detector on the combination of 1-person and 2-person
training sets described in Sec. 3, but slightly modify the initial assignment of images to the
DPM components. We assign training images with less than 5% occlusion to the single-
person training dataset, since in that case the single-person detector already obtains high
performance for both people. We initialize the 3 double-person DPM components with im-
ages corresponding to occlusion levels: 5%–25%, 25%−55%, and 55%−75%.
Non-maximum suppression (NMS): The non-maximum suppression in the joint detector
is more complicated than in the standard DPM since we have bounding box predictions
from two different types of detections (single and two-person detections) as well as strongly
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overlapping bounding box predictions from our two-person components. We thus imple-
ment NMS in two steps. The first step is performed prior to bounding box prediction and
already removes a large portion of multiple detections on the same person. In this first
step two-people detections and single-person detections compete and suppress each other
depending on the respective score. The remaining multiple detections are either due to mul-
tiple two-person detections in cases when more than two people appear close to each other
(e.g. rightmost tree people in the fourth image in Fig. 1) or detections with significantly dif-
ferent bounding box aspect ratios. Given the reduced set of hypotheses after the first round
of NMS, we perform bounding box prediction followed by the second round of NMS. This
second step corresponds to the NMS typically performed for DPM [10]. The second round is
done independently for single-person and two-person components of DPM, as we found that
one-person detections may incorrectly suppress two-person detections otherwise. During
NMS of detections from the two-person components we additionally prevent two bounding
boxes predicted from the same double-person detection from suppressing each other. As an
illustrative example, we could correctly detect all three people in the fourth image on Fig.
1 despite strong occlusion of the middle person. In that case the single-person detections
where predicted from two double-person detections and multiple detections on the middle
person were correctly removed by the second stage of the non-maximum suppression.

4.2 Results
We evaluate the performance of our joint detector on two publicly available datasets, “TUD-
Pedestrians” and “TUD-Crossing”, originally introduced in [1]. “TUD-Pedestrians” contains
250 images of typical street scenes with 311 people all of which are fully visible. “TUD-
Crossing” contains a sequence of 201 images with 1008 annotated people that frequently
occlude each other partially or even fully. To capture the full range of occlusions we extended
the annotations of the “TUD Crossing” dataset to include also strongly occluded people,
which resulted in 1186 annotated people.

We begin our analysis with the “TUD-Pedestrians” dataset. Detection results are shown
in Fig. 6(a) as recall-precision curves. Since this dataset does not contain any occluded peo-
ple our double-person detector (Sec. 3) generates numerous false positives interpreting each
person as a pair of people one of which is severely occluded. As expected the single-person
detector performs well on this dataset, achieving an equal error rate (EER) of 87% . The joint
detector slightly improves over the single person detector achieving 90.5% EER. This result
is a bit surprising because the joint detector is trained to solve a more difficult problem of
detecting both fully visible and partially occluded people. We attribute the improvement of
the joint detector to the training set that in addition to real images has been augmented with
artificial training examples (c.f. Sec. 3). This parallels the recent results on using artificially
genertated data for training of people detection and pose estimation models [14, 15].

The evaluation on “TUD Pedestrian” demonstrates that integrating single- and double-
person detectors within the same model does not result in a performance penalty in the case
when people are fully visible.

In order to assess the joint detector in realistic scenes that contain both occluded and
fully visible people we evaluate its performance on the TUD-Crossing dataset. Quantita-
tive results are shown on Fig. 6(b) and a few example images on Fig. 1 (bottom row). First
we compare the performance of single and double-person detectors, which achieve approxi-
mately the same EER of 76%. The double-person detector achieves higher recall compared
to the single-person detector, being able to detect even strongly occluded people. However
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(b) TUD-Crossing
Figure 6: Detection performance on TUD-Pedestrians (a) and TUD-Crossing (b).

the precision of the double-person detector suffers from multiple detections on fully visible
people. The single-person detector produces fewer false positive detections, but also fails to
detect occluded people, saturating at a recall of 76%. Finally, the joint detector significantly
improves over both single and double person detectors achieving an EER of 83%. Note, that
while demonstrating overall improvement, the joint detector has a somewhat lower perfor-
mance in the high precision area compared to the single person detector. Inspecting the false
positives of the joint detector with highest scores reveals that most of them correspond to
cases when one-person and two-person components of the detector fired simultaneously on
the same pair of people, but these detections where sufficiently far from each other to persist
through the non-maximum suppression step (e.g. false positive detection in the first image
on Fig. 1).

Finally, we compare the performance of our approach with the Hough transform based
detector of [4], which is specifically designed to be robust to partial occlusions. The authors
of [4] kindly provided us their detector output (in terms of bounding boxes) which allows
to compare their result on our full ground-truth annotations making these results directly
comparable to the rest of our experiments (Fig. 6(b)). The approach of [4] improves over the
single-person detector in terms of final recall, but loses some precision, likely because their
local features are rather weak compared to the discriminatively trained DPM model. Our
joint model outperforms the approach of [4] by a large margin. Fig. 1 shows a few example
frames from the “TUD-Crossing” sequence, comparing our joint detector with the results of
[4]. Note that our approach is able to correctly detect occluded people in the presence of very
little image evidence (e.g. three pairs of people in the second image), whereas the approach
of [4] fails in such cases. At the same time our approach also correctly handles detection of
single people (e.g. second and third images).

5 Multi-Person Tracking
This section compares the performances of a single-person and the joint detector (Sec. 4)
in the context of multiple people tracking. To that end we employ the people tracking-by-
detection formulation of [2]. Given the set of detections in frame j as h j = [h1, . . . ,hN j ], we
find people tracks by finding sequences H of hypotheses that maximize the objective:

p(H) = pdet(h1
j1)

T

∏
k=2

ptrans(hk−1
jk−1

,hk
jk)pdet(hk

jk), (3)

where pdet(h) is the probability of correct detection and ptrans(h1,h2) is the probability that
hypotheses h1 and h2 correspond to the same person in subsequent frames. Tracking pro-
ceeds by maximizing Eq. 3 subject to the constraint that none of the transition probabilities
falls below a predefined threshold τtrans. At each iteration the longest track that does not
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Figure 7: Tracking-by-detection results on the TUD-Crossing dataset with single-person
detector (top row) and our joint detector (bottom row). Colors and numbers indicate tracks
corresponding to different people.

violate this constraint is returned and all detection hypotheses overlapping with the found
track are removed from further consideration. The maximization of Eq. 3 is repeated until
all hypotheses are removed. Similarly to [2] we model ptrans(h1,h2) as Gaussian distribu-
tion with respect to differences in position and scale of the detections and set pdet(h) to the
exponent of the score of h returned by the person detector. We keep the tracking parameters
as in [2] and set τtrans = exp(−5), which achieves a reasonable trade-off between obtaining
longer tracks while preventing tracks to drift from one person to another. The resulting set of
tracks will typically contain a few long tracks corresponding to correct detections of people,
but will also include a large number of short tracks which result from spurious detections
in background and occasional detections at significantly wrong scale. In order filter of such
spurious tracks we remove all tracks of length smaller than 10 from further consideration.

We apply the above tracking-by-detection approach without modifications both to the
output of the single-person and the joint detectors. The set of hypotheses in each frame is
given by the output of the detectors prior to non-maximum suppression. In the case of the
joint detector any hypothesis hi corresponds either to one person or two people, depending on
the detector component. Since the single-person and two-person detection components are
trained jointly we expect their detection scores to be comparable, and let the temporal infer-
ence decide which component to choose. Given the final set of tracks we then predict people
bounding boxes for all two-person hypotheses using the procedure described in Sec. 4.

Fig 7 shows sample frames visualizing the tracking results. Note, that tracker based on
the single-person detector is able to recover tracks of people even under significant partial
occlusions (e.g. track 5 in the first image and track 6 in the second image). However, it fails
when people become strongly occluded as for example the person behind track 28 in the first
image or tracks 16 and 39 in the fourth image. The tracker based on the joint detector is able
to correctly track people even in such difficult cases clearly showing the potential of using
our joint detector as the basis for multi-people tracking in scenes with many people and in
the presence of severe occlusions.

6 Conclusion

Occlusion handling is a notorious problem in computer vision that typically requires careful
reasoning about relationships between objects in the scene. Building on the state-of-the-art
DPM detector [10], we developed a joint model that is trained to detect single people as
well as pairs of people under varying degrees of occlusion. In contrast to standard people
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detectors that treat occlusions as nuisance and degrade quickly in the presence of strong
occlusions, our detector is specifically trained to capture various occlusion patterns. Our
joint detector significantly improves over a single-person detector when detecting people in
crowded street scenes, without loosing performance on images with one person only. On the
challenging TUD-Crossing benchmark our joint detector improves the previously best result
of [4] from 73% to 83% EER. Finally, we have demonstrated the effectiveness of our joint
detector as a building block for tracking-by-detection. We envision that our approach can
be applicable to detection of multiple people in various domains (e.g. surveillance videos or
sports scenes) and can be used as a building block for tracking-by-detection, pose estimation,
and activity recognition in multi-people scenes.
Acknowledgement: We would like to thank Bojan Pepik for the code and helpful discus-
sions on DPM.
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