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Abstract

In this paper we consider the problem of multi-person detection from the perspec-
tive of a head mounted stereo camera. As pedestrians close to the camera cannot be
detected by classical full-body detectors due to strong occlusion, we propose a stereo
depth-template based detection approach for close-range pedestrians. We perform a slid-
ing window procedure, where we measure the similarity between a learned depth tem-
plate and the depth image. To reduce the search space of the detector we slide the detector
only over few selected regions of interest that are generated based on depth information.
The region-of-interest selection allows us to further constrain the number of scales to
be evaluated, significantly reducing the computational cost. We present experiments
on stereo sequences recorded from a head-mounted camera setup in crowded shopping
street scenarios and show that our proposed approach achieves superior performance on
this very challenging data.

1 Introduction

Robust multi-person detection and tracking is an important prerequisite for many applica-
tions. Examples include the use of mobile service robots in busy urban settings or mobile
AR applications such as Google’s project Glass. In this paper, we address the problem of
stereo based person detection from the perspective of a moving human observer wearing a
head-mounted stereo camera system. From this viewpoint many pedestrians in a crowded
scenario are only partially visible due to occlusions at the image boundaries. In such situa-
tions, standard full-body object detectors such as [4, 7] are not well-suited, since they cannot
deal with the large degree of occlusion. On the other hand, we can take advantage of the ele-
vated viewpoint of a head-mounted camera, which typically leaves the head-shoulder region
of close-by pedestrians well visible.

Taking inspiration from a recently proposed human upper body detector for Kinect RGB-
Depth data by [3], this paper proposes an improved stereo depth-template based approach
which can quickly and reliably detect close-by pedestrians. Similar to [2] we generate re-
gions of interest (ROIs) based on the stereo data in order to reduce the search space of the
detector. Our approach learns a continuous normalized depth template from annotations of
human upper bodies and slides this template over the extracted depth ROIs at several scales
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in order to compute a normalized similarity distance score. The output of this process are dis-
tance matrices whose entries represent the distance between the template and the overlayed
segment of the ROI for each scale. After non-minimum suppression (NMS) in the distance
matrices we obtain several detections (from different scales) for a person that are pruned to
a set of final detections by a second, template-based NMS stage. We systematically evaluate
this approach and characterize the effects of its parameters. In addition, we show how it can
be integrated into a mobile multi-person tracking framework.

Besides this technical design and evaluation of our proposed detector, a second main
contribution of this paper is its empirical demonstration of the somewhat surprising fact that
such a relatively simple and fast approach can reach superior detection performance on very
challenging outdoor data. This is even more surprising since our approach is based entirely
on stereo range data, which is considerably more noisy than the Kinect RGB-D data often
used for indoor scenarios.

The paper is structured as follows. The next section discusses related work. After that,
Sec. 3 presents an overview of our detection framework. Sec. 4 introduces the integration of
the detector with a tracking system. Finally, Sec. 5 presents a detailed experimental evalua-
tion of the full design space of the detector.

2 Related Work
The ability to reliably detect pedestrians in real-world images is required for a variety of
automotive and robotics applications. Nowadays, state-of-the-art object detectors such as
[4, 7] yield highly accurate human detection results for fully observed pedestrians. However,
highly occluded scenarios still present major problems. Furthermore these approaches are
quite expensive to evaluate which limits their deployment for use on autonomous platforms.

For detecting pedestrian that are undergoing partially occlusions, Wojek et al. [18] pro-
pose a framework where a full-object detector and several object-part detectors are combined
in a mixture-of-experts based on their expected visibility. Enzweiler et al. [14] learn local
body part detectors combined in a mixture-of-experts framework supported by stereo and
flow cues. Wang et al. [17] perform occlusion handling in a modified SVM framework by
combining HOG and LBP features. However, all of these methods suffer from high compu-
tational cost of either features or classifiers.

To deal with this problem, several approaches have been proposed to restrict the eval-
uation of the detector to only few ROIs that are extracted based on, e.g., stereo range data
[1, 2, 8], motion [5], or scene geometry [11]. In this paper we follow a similar strategy of
ROI extraction based on stereo information in order to reduce the search space for the de-
tector. As a result, we reduce the computational effort, but also the number of possible false
positives since only image regions are evaluated that are likely to contain target objects.

Several existing approaches incorporate stereo information in order to improve detection
accuracy. Gavrila et al. [8] employ depth cues for first extracting the ROIs. After generating
detection hypotheses by measuring the Chamfer distance between a learned shape contour
model and the image input, the hypotheses are verified by cross-correlation between the two
stereo images. Walk et al. [16] propose a disparity statistics feature which is combined with
motion features and HOG to give a large gain in performance. Spinello et al. [15] propose a
full-body pedestrian detector using dense depth data from an RGB-D Kinect camera. Based
on the idea of HOG, the approach introduces Histograms of Oriented Depths as a new feature
that follows the same computational procedure as HOG. The approach by Ikemura et al. [12]
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Figure 1: (a) Overview of the different modules of the proposed approach. Blue arrows indi-
cate the interaction between the individual modules. Black arrows represent the interaction
within the modules. (b) Camera setup used for recording the video sequences.

proposes a histogram based procedure for detection of humans in depth data, by learning a
histogram based template that is employed in the detection process. The approach by Choi et
al. [3] proposes an ensemble of detectors on multiple perceptual cues, where the output of all
detectors is fused using an RJ-MCMC tracker. One of their detectors is a manually created
binary template that is compared to the depth image of a Kinect RGB-D sensor to measure
the distance to observed shape of a human. We take inspiration from this approach, but refine
and improve it in several respects. In particular, we propose a continuous normalized-depth
template, which is learned from annotated upper bodies of pedestrians in noisy stereo data.
As we show experimentally, our detector performs significantly better than the binary one,
as it represents the distribution of the depth values of the objects more precisely.

3 Approach
The key objective of our approach is to be able to detect pedestrians in a close range to the
camera, where a standard full-body detector will usually fail. In addition, by focusing only
on promising ROIs which are likely to contain a target object, we want to significantly reduce
the computational cost and the number of false positives of our detector.

In Fig. 1 we illustrate a compact overview of our proposed detection and tracking frame-
work. For each new frame, given the stereo pair and the corresponding depth map, we
project the 3D points onto a (automatically estimated) ground plane and extract the ROIs
using connected components on the ground projection image. For each extracted 3D ROI,
we generate the corresponding ROI in the image plane by backprojecting the ROIs from the
ground plane to the image. The 2D ROIs are passed to the detector, which slides the learned
upper body template over the ROIs and computes the distance matrix by taking the Euclidean
distance between the template and the overlayed, normalized depth image segment. Using a
minimum filter on the distance matrix, we obtain possible bounding box hypotheses for the
upper bodies. These hypotheses are pruned to a final detection set by using a template based
intersection-over-union (IoU) NMS stage, where the detection with the lowest distance is
chosen first and all other detections within a certain overlap area are removed iteratively.

3.1 Learning

We first learn a depth template from 600 annotations of upper bodies. To this end, the
annotated depth regions are first normalized by the median depth and scaled to a fixed size

Citation
Citation
{Choi, Pantofaru, and Savarese} 2011



4 D. MITZEL, B. LEIBE: CLOSE-RANGE HUMAN DETECTION FOR HEAD CAMERAS

(a)

z

x

(b) (c)
Figure 2: Extraction of the ROIs. (a) Input stereo depth. (b) ROIs - the connected compo-
nents on the ground plane projection map. (c) The ROIs backprojected to the image plane.

of 150× 150 pixels. Before summing up the annotated bounding box contents to a final
template, a binary mask of the same size is generated for each annotation, where the invalid
pixels (pixels that failed the left-right check of the stereo algorithm) are set to zero and valid
pixels to one. Finally, all the annotations and masks are summed up to obtain the template
illustrated in Fig. 4 (left) by dividing the summed annotations by the summed masks in a
point-wise manner.

3.2 ROI Extraction

In contrast to classical sliding window object detectors, such as HOG [4], we reduce the
search space for the detector to few small ROIs and few scales in the image. In order to
achieve this, we exploit information about the location of the objects on the ground plane
based on the stereo data, similar to [2].

The ROI extraction process is visualized in Fig. 2. We first project the 3D depth points
onto a ground plane divided into bins of 5× 5cm. The number of points that fall into each
bin is weighted by the square distance to the camera in order to compensate for the fact that
far-away objects have smaller support in the image than closer ones. The final set of ROIs
is obtained by connected components, as shown in Fig. 2(b). To generate the corresponding
ROIs, which will be scanned by the detector in image space, we backproject the ROIs from
3D to the image plane, as shown in Fig. 2(c). The width of the corresponding bounding box
is derived from the width of the ROI, and the height is obtained from the highest point that
is enclosed by the ROI.

3.3 Depth Template Detector

The pipeline for the detector consists of the following steps. First, for each ROI in the image
plane, we discard the pixels which are not in the depth range of the ROIs in 3D by setting
them to zero, as illustrated in Fig. 3(b). Then, starting from an initial template size that is one
third of the ROI height, we slide the template over the ROI. At each position, the segment
of the ROI that is overlayed with the template is normalized with its median depth and then
the distance between the template and the segment is computed. As a final result we obtain
a distance matrix that contains for each position of the template the corresponding distance
to the segment in the depth image, see Fig. 3(c).

Distance Measure. For the distance measure between the template and the ROI we explore
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(a) (b) (c)
Figure 3: (a) Original ROI from the left image. (b) Input depth from the ROI. (c) The
resulting distance matrix for the initial scale.

two options: Hamming Distance on binarized template and depth as proposed by [3],

∑
(i, j)∈W

|Tbin(i, j)− Ibin(x+ i,y+ j)|H (1)

where T denotes the template and I the ROI, and the Euclidean Distance on continuous
depth-normalized templates.

∑
(i, j)∈W

min(dmax,(T (i, j)− I(x+ i,y+ j))2). (2)

In the case that two pedestrians are walking closely behind each other, the resulting ROI will
cover both of them. The person in the background will, however, be occluded by the person
in front. By overlaying the template over the person behind, some of its pixels will fall in
the occluded region. The resulting distance between the template and the overlayed region
will increase, leading to a rejection of the detection. To avoid such false negatives, we use a
truncated distance that clips the contribution of each pixel to a fixed maximum value dmax.

Multi-Scale Handling. Most of the pedestrians in our scenarios are walking close to each
other in groups of two or more people. This often leads to ROIs that represent the persons
not individually but that cover entire groups of pedestrians. As the pedestrian heights may
vary, we need to rescale the template, because the initial scale estimation based on the height
of the 2D ROI might not be representative for all pedestrians in the group. Note that here we
only need to down-sample the template starting from the initial scale, since the height of the
ROI in the image plane is based on the highest 3D point (from the tallest person) that falls
inside the 3D ROI, as already mentioned before. Each downscaled version of the template is
slid over the ROI again, generating an additional distance matrix.

Non-Minimum Suppression. For each scale of the template, we obtain a distance matrix
on which we perform NMS by applying a minimum filter of size 3× 3. As a result we
obtain few positions in the distance matrix which are the minima in their local neighborhood.
The multi-scale approach introduces several additional detections on a person for a number
of neighboring scales, as the scale stride is usually small. To reduce this set to only one
representative detection for each pedestrian, we additionally perform an image based NMS,
where we iteratively select the detected bounding box with the lowest distance and remove
all bounding boxes that have a certain overlap with this box. A standard approach for this
is to compare the bounding box IoU. However, such a strategy will cause some correct
detections to be rejected, as shown in Fig. 4 (b), (e.g., for persons walking behind each other,
where the overlap between the boxes is high). To cope with this problem, we propose a
more precise intersection criterion which is based on the intersection between the templates
(intersected pixels that are non-zero) of the individual detections. In Fig. 4(b,c) we show
the comparison between the bounding box based IoU and the template based one. In our
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(a) (b) (c)
Figure 4: (a) Depth template learned based on 600 upper body annotations. (b) Illustration of
the bounding box based intersection over union. (c) Template based intersection over union.

experiments we used a threshold of 0.2 in IoU for pruning the detections. In the classical
bounding box based approach, this leads to rejection of one of the detections, whereas in the
template based approach both detections will be kept. Further quantitative experiments (see
Sec. 5) underline that this criterion is better suited for our scenario.

4 Integration with Tracking System
For the tracking module we employed a simplified version of the robust multi-hypothesis
tracking proposed by [13]. Briefly stated, our tracking framework applies the following pro-
cedure. In each frame the detections are transformed to global 3D world coordinates by
projecting the middle point of the bounding box onto an automatically estimated ground
plane using visual odometry estimate of the camera egomotion. These 3D positions are con-
nected to a set of trajectory hypotheses over a temporal window. The final best representative
hypotheses in terms of scene representation are obtained using a model selection framework.

Generation and Pruning of Track Hypotheses. The projected 3D points on the ground
plane are associated to long trajectories by employing an Extended Kalman Filter with a
constant-velocity motion model. For all detections in the current frame we apply the Kalman
filter backwards in time and use the same detections in order to extend existing trajectories.
With this strategy, we obtain trajectories that might share an observation, which needs to be
resolved, as two persons cannot occupy the same space in 3D. To this end, we prune the
over-complete set of trajectories which compete for observations using the model selection
framework proposed by [13]. Due to the employed trajectory generation process we usually
obtain two hypotheses for one and the same person: the new one that was generated by ap-
plying the Kalman Filter backwards in time and the extended one. Since the model selection
framework may choose either the extended or the newly created one, we need a process that
assigns always a consistent ID to the same person. For this, the ID to the final trajectory in
the current frame is assigned based on the overlap to the trajectories from the previous frame.
If the overlap of the new trajectory with one of the previous trajectories is above 95% then
we propagate the ID from the previous trajectory to the new one. As demonstrated in our
experiments, this tracking framework succeeds in grouping the detections into stable tracks.

5 Experimental Evaluation
To assess the performance of our upper body detector we report a detailed experimental
evaluation of the full design space of the detector that gives clear guidelines how to apply it
for optimal performance and fast evaluation.
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Data Set. The evaluation was performed on several very challenging sequences captured
from a head mounted camera setup (Bumblebee2), as shown in Fig. 1(b). The images were
captured at 15 fps in crowded shopping streets. The evaluation set consist of 2,543 frames,
in which we have annotated 19,461 pedestrians. For all frames we have computed visual
odometry using the approach proposed by [10]. For stereo depth estimation we used the the
fast and robust algorithm presented in [9]. The detection code and all sequences (annotations,
stereo depth, visual odometry, and estimated ground planes) will be publicly available at
www.vision.rwth-aachen.de/projects/upperbody

For the evaluation in all following experiments we applied the evaluation criteria from
[6]. In each frame the detections are compared to manually annotated ground-truth boxes. In
case that the IoU overlap of a detection with the ground truth annotation is above 0.5 the de-
tection is assumed to be correct. To investigate the performance of our detector for different
distance ranges, we adapted the annotation files by setting the annotations that are beyond
the range to don’t cares (which result in neither false positives nor missing detections).

Overall Performance. In Fig. 5 we present a detailed evaluation in terms of recall vs. false
positives per image (fppi) over several parameters of our detector pipeline. First, we compare
our continuous template to a binary version similar to the one used in [3] for three different
distance ranges of 5, 7, and 10 meters. To generate a binary depth-shape template (which
was generated manually in [3]), we used our continuous template by simply converting all
pixels above zero to one. As shown in Fig. 5(a), our detector performs significantly better
(3-5% higher recall) for the close range of up to 7 meter, which shows that our continuous
template represents the depth distribution on the object better. Note that the binary template
approach profits from the innovations of our ROI extraction, template learning, and template
based NMS and would probably perform worse in the original form as presented in [3].

Comparison with DPM. We also run the DPM detector from [7] on our sequences. The
results plotted in Fig.5(b) underline the complexity of the dataset, as many persons are oc-
cluded by the image boundaries and cannot be detected with a full-body detector. As ex-
pected, the DPM detector performs better for the range up to 7 meters than for the range
up to 5 meters, since starting from 5 meters the pedestrians become fully visible. Still, the
results clearly show our approach’s superior performance.

Number of Scales. In the next experiment, we explore how many scale evaluations are
necessary in order to reach best possible performance. The results of this test parameter are
plotted in Fig. 5(c), showing that we reach the best performance with 1-3 downscalings of
the template (the scale stride in this experiment was 1.03). Essentially, the result indicates
that the initial scale estimation based on the height of the 2D ROI box is accurate enough
and further downscaled versions of the template introduce more false positives.

Scale Stride. The above observation is corroborated by our next experiment, in which we
vary the scale stride using 5 scales. As shown in Fig.5(d), increasing the scale stride from a
base setting of 1.01 introduces more false positives without significantly increasing recall. In
all further experiments, we use a scale stride of 1.03, which is a good compromise between
detection accuracy and processing speed.

NMS. Next, we explore how the different NMS approaches described in Sec. 3.3 affect the
overall performance of the detector. As expected, the template based NMS performs better
(Fig.5(e)), since it takes into account the expected pedestrian shape. We obtain a 3% higher
recall at 0.4 fppi. Note for all the experiments we used an overlap threshold of 0.2.

Fixed Size Template. As can be seen in the example results shown in Fig. 6, many pedestri-
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Figure 5: Quantitative detection performance in recall vs. (ffpi) of our approach performed
on full design space of the detector. If not explicitly mentioned otherwise, the number of
evaluated scales was set to three and the scale stride was set to 1.03. (a) Performance of our
detector for different distance ranges in comparison to a baseline approach [3]. (b) Compar-
ison of our detector to the DPM detector [7] for different distance ranges. (c) Analysis of
the number of scales. (d) Analysis of employing different values for the scale stride. In this
experiment we used 5 scales. (e) Evaluation of different IoU criteria, namely template based
and bounding box based, as discussed in Sec. 3.3. (f) Effect of fixing the size of the template
to a fixed value. Number of evaluated scales was set to 1.

ans appear close to the camera, which results in large 2D ROI boxes. In a further experiment,
we therefore investigate how the resolution of the template affects the performance of the de-
tector and whether we can reduce the initial resolution of the template in order to decrease
computational cost. The results in Fig. 5(f) show that by fixing the size of the template to a
fixed small value of 50×50 pixels and downsampling the ROI to the corresponding size, we
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Figure 6: Experimental detection and tracking results.

still obtain a reasonable performance of about 70% recall at 0.3 fppi.

Computational Performance. Our current system, including ROI candidate generation,
object detection, and tracking runs, without any optimization work, with more than 4 fps on
a single CPU of an Intel Core2 Quad Q9550 @ 2.83GHz, 8GB RAM. (For this experiment
we used 3 scales, scale stride 1.03 and distance range 7 meters). There is still considerable
optimization potential, since the ROI comparisons can easily be parallelized.

Qualitative Evaluation. Finally, Fig. 6 shows some qualitative results achieved on our
sequences. It can be seen that our system is able to detect nearly all pedestrians correctly
with only few false positives. In addition, our approach correctly tracks detected persons
over time keeping correct person identities.

6 Conclusion
We have presented a stereo depth-template based detection approach for detecting pedestri-
ans in the close range. The combination of the ROI extraction with the detector allows us to
restrict the detector evaluation only to few scales and to few small segments in the image,
which reduces the number of false positives significantly. We have shown that even though
this approach is simple and fast to apply, we reach superior performance on noisy stereo data
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for very challenging scenarios from crowded shopping streets. Additionally, we have shown
how this detector can be integrated into an ROI based multi-object tracking framework. For
the future, we plan to investigate how we can improve the performance of our upper-body
detector in the far-range by combining it with an upper body and a full-body detector.

Acknowledgments. We would like to thank Javier Marín for many fruitful discussions and
David Vázquez for providing the evaluation tools. This project has been funded by the cluster
of excellence UMIC (DFG EXC 89).

References
[1] M. Bajracharya, B. Moghaddam, A. Howard, S. Brennan, and L.H. Matthies. A Fast

Stereo-based System for Detecting and Tracking Pedestrians from a Moving Vehicle.
IJRS, 28(11), 2009.

[2] M. Bansal, S. H. Jung, B. Matei, J. Eledath, and H. S. Sawhney. A real-time pedestrian
detection system based on structure and appearance classification. In ICRA, 2010.

[3] W. Choi, C. Pantofaru, and S. Savarese. Detecting and Tracking People using an RGB-
D Camera via Multiple Detector Fusion. In CORP, 2011.

[4] N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. In
CVPR, 2005.

[5] M. Enzweiler, P. Kanter, and D.M. Gavrila. Monocular Pedestrian Recognition Using
Motion Parallax. In Intel. Vehicles Symp., 2008.

[6] M. Everingham, L. Van Gool, C.K.I. Williams, J. Winn, and A. Zisserman. The PAS-
CAL Visual Object Classes (VOC) challenge. IJCV, 88(14), 2010.

[7] P. Felzenszwalb, B. Girshick, D. McAllester, and D. Ramanan. Object Detection with
Discriminatively Trained Part-Based Models. PAMI, 32(9), 2010.

[8] D. Gavrila and S. Munder. Multi-Cue Pedestrian Detection and Tracking from a Mov-
ing Vehicle. IJCV, 73(1), 2007.

[9] A. Geiger, M. Roser, and R. Urtasun. Efficient Large-Scale Stereo Matching. In ACCV,
2010.

[10] A. Geiger, J. Ziegler, and C. Stiller. StereoScan: Dense 3d Reconstruction in Real-time.
In Intel. Vehicles Symp., 2011.

[11] D. Geronimo, A.D. Sappa, D. Ponsa, and A.M. Lopez. 2D-3D-based On-Board Pedes-
trian Detection System. CVIU, 114(5), 2010.

[12] S. Ikemura and H. Fujiyoshi. Real-Time Human Detection using Relational Depth
Similarity Features. In ACCV, 2010.

[13] B. Leibe, K. Schindler, and L. Van Gool. Coupled Object Detection and Tracking from
Static Cameras and Moving Vehicles. PAMI, 30(10), 2008.

[14] B. Schiele M. Enzweiler, A. Eigenstetter and D. M. Gavrila. Multi-Cue Pedestrian
Classification with Partial Occlusion Handling. In CVPR, 2010.



D. MITZEL, B. LEIBE: CLOSE-RANGE HUMAN DETECTION FOR HEAD CAMERAS 11

[15] L. Spinello and K. O. Arras. People Detection in RGB-D Data. In IROS, 2011.

[16] S. Walk, K. Schindler, and B. Schiele. Disparity Statistics for Pedestrian Detection:
Combining Appearance, Motion and Stereo. In ECCV, 2010.

[17] X. Wang, T. X. Han, and S. Yan. An HOG-LBP human detector with partial occlusion
handling. In ICCV, 2009.

[18] C. Wojek, S. Walk, S. Roth, and B. Schiele. Monocular 3D Scene Understanding with
Explicit Occlusion Reasoning. In CVPR, 2011.


