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Abstract

In this paper we propose a novel method for discriminative monocular human pose
tracking using a mixture of Gaussian processes and a dynamic programming algorithm
for selecting the optimal expert at each frame. The proposed tracking mechanism in-
corporates a dynamical model into the predictive distribution which is combined with
the appearance model in a principled manner. This model is able to give a smoother
predicted pose and resolves ambiguities in the image to pose mapping. We introduce
a mixture of Gaussian processes model which optimises the size and location of each
expert ensuring that each expert models a coherent region of the dataset resulting in an
accurate predictive density. We compare our method to other state of the art methods on
2D and 3D monocular pose estimation on ballet and sign language data sets.

1 Introduction
Discriminative pose estimation is the task of estimating the pose of an articulated body by
directly learning a mapping from image features to the subject’s pose [1]. These methods
use a training set containing images with the subject’s pose annotated to build a model that
is capable of inferring 3D pose from a single viewpoint [23].

However, the mapping from an image to its 3D pose is highly noisy and ambiguous, as
such the inference technique used to learn the mapping must be able to learn a non-linear
relational mapping.

A widely adopted model for achieving this is a Bayesian mixture of experts model (BME)
[3, 6, 12, 14, 18, 23, 24] where the prediction is formed as a weighted combination of linear
models. Each linear model is used to represent a local region of the training set and a logistic
regression model is used to give a probabilistic weight to each expert for prediction. This
allows the modelling of non-linear mappings through the use of multiple linear models and
multi-modality is achieved by different experts representing different modes of the relational
mapping. However, typically the pose is inferred by combining the weighted contributions
of all experts. In multi-modal regions this has the effect of averaging over the two modes
resulting in an incorrect pose.

Another popular technique is Gaussian Processes due to their ability to model non-linear
functions, to generalise well from small training sets and accurately model the predictive
uncertainty in the mapping [8, 9, 20, 25, 27]. However, due to the O(N3) computational
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complexity and their unimodal Gaussian predictive distribution, larger and more complex
datasets require either significant sparsification [19] or the use of multiple local models [8,
25, 28].

Employing multiple local Gaussian processes [25, 28] overcomes the limitations of Gaus-
sian processes by limiting each models size, thus over coming their O(N3) complexity and
allowing each model to represent a different mode of the mapping. However, previous meth-
ods [25, 28] rely on finding nearest neighbours in the feature space making test inference
susceptible to noisy image features.

In order to resolve the ambiguities in the multi-modal mapping from image to pose,
some researchers have added a dynamical model to select the correct mode by conditioning
their pose estimation on the previous frame’s pose [23, 28]. These techniques use a first
order Markov assumption to learn a dynamical model that is combined with their appear-
ance model to resolve the ambiguities. However, the first order assumption means that the
dynamical model also suffers from a high degree of ambiguity. Secondly, these dynamical
models are very sensitive to the accuracy of the previous pose estimate [23].

In this paper we propose a mixture of Gaussian Processes model learnt in a similar fash-
ion to a Bayesian mixture of experts model. Our method optimises the size and location of
the experts to ensure that they give an accurate predictive distribution over the pose space
that is robust to noise in the feature space. To resolve the ambiguities, we introduce a second-
order dynamics model that uses dynamic programming to infer an optimum path through our
multi-modal predictive distribution. We show that by including a second order term, most of
the ambiguity in human pose dynamics is resolved. Our method also alleviates the sensitiv-
ity to inaccurate preceding poses by integrating out multiple previous predictions to give a
stable pose estimate.

2 Related Work
In this section we give an overview of relevant research in discriminative human pose es-
timation. The early work on tackling human pose estimation by learning a mapping from
image features to the pose space was proposed by Argarwal et al. [1] who used a relevance
vector machine to estimate human pose from histogrammed shape context descriptors sam-
pled from silhouettes. Since then a large variety of techniques have been proposed to tackle
the problem. As introduced in section 1 Bayesian mixture of experts [3, 6, 12, 14, 18, 23]
have received a lot of attention for their simple formulation and ability to model non-linear
multi-model relations. Thayananthan et al. [24] adapt the Bayesian mixture of experts by
replacing the linear experts with relevance vector machines allowing each expert to model a
non-linear function by mapping the inputs through a kernel.

More recently, Gaussian processes have been employed in a variety of ways. Although
single Gaussian process models have been employed for pose estimation [27], they are lim-
ited to simple data sets due to their uni-modal predictive distribution and O(N3) complexity.
Other approaches use shared space Gaussian process latent variable models (GPLVM) with
a dynamical constraint to learn a shared latent space between the image features and the pose
space [8, 9, 10, 26]. The dynamical constraint ensures that the latent points are ordered tem-
porally allowing smooth tracking. This model still requires representing the entire training
set with a single Gaussian process, restricting its use to small data sets. Urtasun and Darrell
[25] construct local online Gaussian process models by selecting expert centres and using
neighbouring training points to train small Gaussian process models. Bo and Sminchisescu
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Figure 1: Graphical model for 2nd order pose filtering showing the nodes involved in computing yn.
See section 3.

[5] introduce a twin structured Gaussian process that is able to learn the structure of the pose
variables such that appearance predictions correspond to valid poses.

Similar in spirit to [9], Memisevic et al. [17] introduce shared kernel information em-
bedding (sKIE) for pose estimation. This model learns a shared latent space, but in contrast
to the GPLVM discussed above, it uses an O(N2) kernel density estimation to optimise the
latent points. They construct local online models centered around the test point to allow
inference on large data sets.

The majority of discriminative pose estimation techniques provide an estimation for each
image frame independently. Dynamical models play an important role in discriminative
tracking to smooth the estimated pose and resolve ambiguities inherent in the image to pose
mapping. Sminchisescu et al. [23] introduce a probabilistic framework for discriminative
tracking where the predicted pose is conditioned on the previous pose and the image ob-
servation. At each frame, they combine the predictions of two BME models, one giving a
pose prediction conditioned on the image, the other conditioned on the previous pose. They
show that in some sequences, including their pose dynamics is able to reduce tracking errors.
However they note that this model is sensitive to the accuracy of previous pose estimates.

Thayananthan et al. [24] use a similar formulation except each Gaussian pose estima-
tion is propagated using a Kalman filter. At each frame they take their propagated density
and compute pairwise products with the observation from a mixture of relevance vector ma-
chines. Each proposal distribution is then rendered into the image space using a human body
model, and they use silhouette chamfer distance to assign each proposal a likelihood. The
best K proposal distributions are then propagated to the next frame. To extract a tracked
sequence, they use the Viterbi algorithm to find an optimal path through the Kalman filters.

In a similar fashion to a Gaussian process dynamical model, Memisevic et al. [17] pro-
pose adding a dynamical constraint to their sKIE model, but they do not provide a full eval-
uation of this technique.

3 Dynamical Second Order Filtering for Mixture of
Experts Models

In this section we introduce an overview of a mixture of experts model and an algorithm
that exploits a temporal model to give a smooth prediction from the predictive distribution.
A mixture of experts model gives a predictive distribution over the pose y as a mixture of
Gaussian distributions as a function of an image feature x:

p(y|x) =
K

∑
i=1

p(z = i|x)N (µi(x),Σi(x)). (1)
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Figure 2: Best viewed in colour and zoomed. These plots show the pose data for the subject’s left hand
in one axis for the Ballet dataset. Black crosses are training points, red are test and blue are predicted
from a linear model p(yn|yn−1,yn−2). Plot (a) shows a first order prediction yn−1 against yn, although
there is clearly a linear relationship, there is a high degree of ambiguity. Plot (b) shows yn−2 against
yn and plot (c) shows a 3D plot with all three variables rotated to demonstrate the linear manifold. The
second order pose distribution p(yn|yn−1,yn−2) is highly linear, where yn−2 resolves vast majority of
the ambiguity in plot (a). Plot (d) shows yn−1 plotted against yn−2. The prediction of a linear model
shown in blue is able to model the human motion to a high degree of accuracy.

Here, each µ i and Σi are given as a function of x and p(z = i|x) is a weight applied to each
component as a function of x such that ∑i p(z = i|x) = 1 and 0≤ p(z = i|x)≤ 1.

In human pose tracking we wish to make a point estimate ŷn for the pose at frame n.
The naive approach is to take the expectation of (1) by taking a weighted average of the
component means. While this approach is acceptable in a unimodal setting where only one
of the Gaussian components is active, in multi-modal regions this averaging can result in
incorrect poses. Secondly, the output of successive frames is often noisy due to the image
ambiguities inherent in monocular pose estimation.

We propose an algorithm for inferring a smooth path through sequence of multi-modal
pose estimations by forming the problem as a second order Markov model. This allows a dy-
namics prediction to re-weight the Gaussian components at each frame producing a smooth
path through the predictive distribution. By exploiting this property we can use a simple
dynamical model which predicts a single mode allowing for exact inference along a Markov
chain. This simplifies inference compared to previous methods [23] which used a mixture of
experts dynamical model, enforcing the use of a clustering approximation to be made at each
frame. We introduce a latent variable to allow for tractable Markov chain inference with the
mixture of Gaussians predictive distribution given by the appearance model, see figure 1.
The role of this latent variable is to act as a switch, separating out the components of the
predictive distribution such that each forms a Gaussian observation. By considering each
component in turn, we can obtain an efficient, tractable algorithm for inferring the optimum
pose sequence through the Markov chain.

Our model is formulated such that we wish to infer two latent variables at each frame
in the sequence, zn denotes the expert representing a mode of the pose distribution, and ŷn
represents a smoothed prediction within that mode. That is, we maintain K predictions for
each frame in the sequence, we denote the prediction at frame n from appearance expert i as
ŷi,n. The predicted pose at frame n by expert zn = i is given by:

ŷi,n =p(yn,zn = i|x1:n) = p(yn|xn,zn)

∑
zn−2

∑
zn−1

p(yn|ŷzn−1,n−1, ŷzn−2,n−2)p(zn−1|x1:n−1)p(zn−2|x1:n−2) (2)

where p(yn|xn,zn) is the Gaussian expert prediction. p(yn|ŷzn−1,n−1, ŷzn−2,n−2)) is a dynam-
ical prediction which uses the previous two states of ŷ to form a Gaussian prediction for
ŷzn,n. Note the summation of zn−1 and zn−2, the dynamical prediction is a weighted sum of
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the predictions from all combinations previous locations. This reduces the sensitivity of the
prediction to the previous pose estimates. Finally, p(zn−1|x1:n−1) and p(zn−2|x1:n−2) are the
marginal probabilities of appearance mode being z = i for a particular frame conditioned on
the previous observations. These marginals are evaluated as

p(zn|x1:n) = p(zn|xn)p(ŷzn,n|Ytr) ∑
zn−2

∑
zn−1

p(zn−1|x1:n−1)p(zn−2|x1:n−2), (3)

where p(ŷzn,n|Ytr) is a density model which gives the probability of the posterior pose pre-
diction ŷzn,n being a valid pose. This has the effect of encoding the structure between the
joints by down weighting pose predictions that aren’t globally coherent with the training
examples.

The prediction made for each expert at a given frame is a Gaussian product between the
dynamical prediction p(yn|yn−1,yn−2) and the appearance prediction p(yn|xn,zn). This has
the useful property that the influence of each Gaussian distribution is inversely proportional
to its uncertainty. That is, if an appearance expert has a higher predictive variance, the
dynamics model will have more influence over the prediction, and vice versa. In this paper
we model p(yn|yn−1,yn−2) using a linear regression model such that

p(yn|yn−1,yn−2) =N (µ([yi,n−1,yi,n−2]
T ),σ([yi,n−1,yi,n−2]

T )) (4)

where µ() and σ() are given by standard Bayesian linear regression [4]. We model the
dynamics of each joint individually to simplify inference and allow for accurate modelling
of the dynamics. Structure between each joint is enforced using a kernel density model
p(y∗|Ytr) = ∑

N
n k(y∗,yn) where y∗ is the predicted pose and Ytr = {yn} are the training

poses. Figure 2 shows that a second order linear model is able to give an accurate model of
a joint’s motion.

Inferring the optimum pose is performed by applying the max-sum algorithm [4] to the
sequence. We initialise the algorithm by setting

p(y1|z1,x1) = µ1,i, (5)

p(y2|z2,x2) = µ2,i, (6)

p(z1|x1) = p(z1 = i|x1), (7)
p(z2|x2) = p(z2 = i|x2), (8)

where µn,i is the predictive mean of component i given by the predictive distribution of
appearance model and p(z1 = i|x1) is the prior associated with each component (equation 1).
We then proceed through the sequence evaluating p(yn|zn,x1:n) for each appearance expert zn
and the corresponding marginal probabilities p(zn|x1:n) (equations 2 and 3). At each frame,
we store zn−1 and zn−2 which correspond to the most likely preceding appearance experts
that lead to zn = i:

β (i,n) = argmax
zn−1,zn−2

p(zn = i|xn)p(zn−1|x1:n−1)p(zn−2|x1:n−2) (9)

The second phase of the algorithm involves back-tracking through the stored sequences
in β to extract the optimum sequence z. We start by setting zN = argmaxi p(zN = i|x1:N) and
ŷN = p(yN |zN ,xN), and then iterate backwards through the sequence n = N−1,N−2, . . . ,1
setting:

zn = β (zn+1,n+1)zn−1 , (10)
zn−1 = β (zn+1,n+1)zn−2 , (11)

ŷn = p(yn|zn,x1:n). (12)
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Thus Ŷ = {ŷ}N
n=1 contains the smoothed predicted pose sequence and z = {zn}N

n=1 stores
the optimal sequence of experts that generated it.

4 Mixtures of Gaussian Process Experts
We construct a mixture of experts model with a Gaussian mixture predictive distribution
where each expert is a Gaussian process. Using a Gaussian process for each expert has
two distinct advantages compared to previous mixture of experts models [6, 24]. Firstly
the predictive uncertainty for a test point, σi(x) from equation 1, is accurately estimated
as a function of the test input. This is particularly valuable when the mixture of experts
is employed in the dynamics framework detailed above as the uncertainty of each expert
prediction is used to govern its influence in inferring the correct pose.

Secondly a Gaussian process allows the inference of kernel hyper parameters through
gradient descent on the likelihood function. This enables the use of a RBF kernel with au-
tomatic relevance detection which uses a different length scale for each input dimension.
These length scales encode the relative importance of each input feature, making the model
more robust to noisy image features [20]. This is a significant advantage compared to other
expert models such as a relevance vector machine [6, 24]. These models require the ker-
nel parameters to be learnt using cross-validation, which is impractical for a kernel with
automatic relevance detection where there are hundreds of parameters.

The predictions from each expert are combined to give a Gaussian mixture distribution
over the pose space. The predictive distribution for a model with K experts is given by

p(y∗|x∗,X,Y,θ ,φ ,z) =
T

∑
i=1

p(z∗ = i|x∗,φ)p(y∗|x∗,Xϑi ,Yϑi ,θ i) (13)

=
T

∑
i=1

p(z∗ = i|x∗,φ)N (µi(x∗),σi(x∗)). (14)

where z = {zn}N
n=1, zn ∈ {1 . . .K} indicate which expert each data point belongs to, ϑi is the

set of indices of data points that belong to expert i, ϑi = {n : zn = i}. Each prediction is given
by a Gaussian process p(y∗|x∗,Xϑi ,Yϑi ,θ) trained on a subset of the data ϑi and is weighted
using a logistic regression model with parameters φ that gives the probability of each expert
conditioned on the input p(z∗ = i|x∗,φ).

The expert indicators, z, control the size, location and number of experts and are set
by Gibbs sampling over the predictive distribution. The probability of a data point n being
assigned to expert i is given by

p(zn = i|z/n,X,Y,θi,φ) ∝ p(yn|xn,Xϑi/n,Yϑi/n,θi)

p(zn = i|z/n,xn,φ). (15)

The distribution p(zn = i|z/n,xn,φ) gives the probability of the training input xn belonging
to expert i and is given by an L1 penalized multinomial logistic regression model [4]. L1
penalization results in sparse weights allowing the model to select relevant input features.

This differs from previous models [16, 21] where Dirichlet process is used to create
new experts during training. Instead we sample from a multinomial distribution given by
p(zn = i|z/n,X,Y,θi,φ). Models that place a Dirichlet process over the expert indicators
rely on sampling a hyper parameter α from a Gamma distribution Gamma(α|aα ,bα). In
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Expert Predictions - KMeans Initialisation

Y

X
0 10 20 30 40 50 60 70 80 90 100

-120

-100

-80

-60

-40

-20

0

20

40

60

Expert Predictions - After 50 Gibbs Iterations

Y

X
0 10 20 30 40 50 60 70 80 90 100

-120

-100

-80

-60

-40

-20

0

20

40

60

Figure 3: Best viewed in colour. Predictive distributions for the mixtures of Gaussian Processes
model on the toy dataset from [16, 21]. The black crosses represent the training points, the red dots
are samples drawn from the predictive distribution and the coloured lines represent the predictive mean
and variance of each expert. See text for discussion.

practice it is difficult to choose parameters aα and bα which lead to a suitable number of ex-
perts. Instead, our model is initialised with a large number of small experts, and unsupported
experts are removed during the Gibbs sampling process.

The model is formulated in a multivariate setting, such that each expert represents a local
set of full poses as opposed to learning a different model for each output dimension. This
has the advantage of imposing a degree of structure to the predictive distribution ensuring
that predictions made are valid poses as observed from the training set.

When training with large data sets, the size of each expert has to be constrained to avoid
individual experts growing such that they are computationally infeasible to train. This is
achieved by modifying the distribution given in equation 15 such that the probability of a
point being assigned to an expert is zero if it contains a set maximum number of points.

Training is initialised by setting the expert indicators z either randomly or by running
K-means on the training pose data. The algorithm then proceeds in a similar fashion to
expectation maximisation. In the expectation step we re-sample the expert indicators and
in the maximisation step we update the Gaussian process hyperparameters and the logistic
regression weights. To detect convergence we calculate the log likelihood of the training
data at each iteration using K-fold cross validation. For a test input x∗, a prediction is made
using each expert as in equation 14 and the output is weighted by p(z∗ = i|x∗,φ).

Figure 3 illustrates the effects of the Gibbs sampling process on a toy data set consisting
of 4 functions with varying levels of output noise [16, 21]. The predictive distribution ob-
tained by setting the expert indicators z using K-means gives poor expert placement resulting
in a erroneous predictive distribution. The Gibbs sampling repositions the experts such that
each one models a mode of the data set with coherent output noise leading to a much better
predictive distribution.

5 Evaluation
We evaluate our method on a Ballet dancing data set [11] and a sign language dataset [7]. We
use two types of image features, bag-of-words features [1] and HMAX features [13, 22]. The
bag-of-words features have been used extensively in human pose estimation [1, 6, 17, 18].
Our features are computed similarly to [17] using shape context [2] descriptors and 300
cluster centers. For the sign language data set it is not possible to extract silhouettes so
we use SIFT descriptors [15]. HMAX features consist of multi-scale Gabor filter responses
which are combined using a winner-takes-all max operation to form an image descriptor. We
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Dataset: Ballet Sign Language
Model/Feature BOW SC HMAX Sil HMAX BOW SIFT HMAX
Our Method (app) 32.52 32.37 32.68 9.50±0.55 6.88±0.48
BME [6] 51.71 61.98 71.72 12.90±0.22 11.87±0.92
Urtasun and Darrell [25] 36.13 33.17 38.18 13.21±1.91 8.11±0.62
sKIE [17] 31.55 31.93 37.57 12.60±0.86 9.36±0.52
Kernel Regression 71.68 71.72 71.71 12.13±0.48 10.65±0.30

Table 1: Quantitive results. Ballet results give the mean average error per joint represented as 3D joint
positions in millimeters. Sign language results give the mean absolute error in 2D joint positions in
pixels. HMAX Sil and BOW SC features are extracted from silhouettes, HMAX and BOW SIFT are
extracted directly from greyscale image.

evaluate these features both with and without silhouettes. Our mixture of Gaussian Processes
model is initialised such that each expert contains an average of 100 training points, and are
initialised using K-means. Twenty Gibbs sampling iterations are then used to optimise expert
locations.

We compare our method against state of the art techniques for monocular pose estima-
tion. The methods we use for comparison are local sKIE [17], Bayesian mixture of linear
experts (BME) [6], Urtasun and Darrell’s local Gaussian process experts [25] and kernel re-
gression. We set the kernel bandwidth following [17]. All results are calculated by taking
the mean absolute error between the predicted pose and the ground truth pose annotations.

We begin by evaluating the appearance model outlined in section 4 against the models
outlined above. Following that we compare the effects of applying our dynamical pose
filtering (section 3) to enable dynamical tracking.

5.1 Appearance Model

The Ballet data set consists of a complex Ballet dancing sequence performed repeatedly by
the same dancer. The choreography is performed 5 times, we use 4 sequences for training
and 1 for testing resulting in 1601 frames for training and 356 for testing. Image features are
extracted for the whole frame as the dancers movement within the image makes it impractical
to extract a tight bounding box around the subject.

Table 1 shows the results for the appearance models. On the silhouette features, we out-
perform the other mixture of expert models but sKIE has a clear lead. When silhouettes are
extracted the inputs are clean enough to allow the isotropic kernel of sKIE to give sufficient
accuracy. However, when features are extracted directly from the image, background noise
causes the performance of sKIE to degrade.

The Sign Language data set consists of approximately 6000 frames of sign language
footage taken from BBC television from a single signer with annotated 2D pose. This is
a highly challenging data set due to the complex changing background and rapid motion.
We break the sequence into chunks of 400 frames and randomly select a selection of these
chunks for training and testing. Our resulting training set consists of 4400 images and the
test set has 1200 image. We conduct the experiments on 5 different random partitions of the
data. The average results over these 5 partitions are shown in table 1.

Our method has a clear lead over the others on this data set. We suggest that sKIE
performs poorly due to the noisy background. Their method doesn’t have a mechanism
for detecting which are the relevant image features making it highly sensitive to background
noise. Urtasun and Darrell [25] method also relies on finding nearest neighbours on the input
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Dataset DPF LDS Appearance Only
Sign Language 7.06 7.28 6.88
Ballet 32.19 50.14 32.37

Table 2: Effect of dynamical pose filtering algorithm (DPF) on overall tracking errors.
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Figure 4: Best viewed in colour. Tracking results for our method (green) on the ballet sequence
compared to the appearance model only (red) and a LDS (blue). Plot shows the position of the subject’s
right hand in the Y axis.

space to build their local Gaussian process models. This makes the model susceptible to
input noise, however the Gaussian process experts are able to determine the relevant inputs,
leading to an improvement over sKIE. Our model uses a Logistic regression classifier to
select the prediction experts which learns a weight for each feature providing robustness to
the noisy backgrounds.

5.2 Dynamical Pose Filtering

In this section we evaluate the dynamical pose filtering outlined in section 3 demonstrat-
ing it’s ability to smooth the predicted pose and resolve ambiguous frames. We compare our
model against a standard linear dynamical system and optimise the parameters using expecta-
tion maximisation [4]. We manually tuned the dimensionality of the latent space to minimise
the tracking errors while remaining numerically stable for the EM algorithm. For the ballet
data set the best results were achieved with a 4 latent dimensions, and the sign language
used 9. We train the LDS on the ground truth pose data, and then use the Kalman smoothing
algorithm [4] to obtain the predicted pose sequence by smoothing E[p(y|x)] where p(y|x) is
given in equation 1.

Figure 4 shows an example output of our dynamical pose filtering algorithm compared
to the unfiltered expectation of the predictive distribution, E[p(y|x)], and a linear dynamical
system. Our algorithm smooths the output of the predicted pose while still closely following
the predictive distribution of the appearance model. On the other hand, the linear dynamical
system makes significant errors and doesn’t give a signal that is as smooth.

Table 2 shows the effect on the mean absolute error on both data sets. The dynamical pose
filtering does not improve the overall tracking accuracy but gives smoother visual results.

6 Conclusion

In this paper we introduce a tracking system using a novel mixture of Gaussian process
experts and a dynamic programming algorithm for inferring a smooth predicted pose for the
tracking sequence. We show that this algorithm is competitive with other state of the art
techniques and provides a useful system for human pose estimation.
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Figure 5: Tracking results for the sign language and ballet datasets showing every fifth frame of a
continous sequence. Ground truth shown in red, predicted pose is shown in green.
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