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Abstract

The evaluation and automation of tasks involving the manipulation of deformable
curvilinear objects, such as threads and cables, requires the real-time estimation of the
3D shapes of these objects from images. This estimation is however extremely chal-
lenging due to the small amount of available visual information, the inherent geometric
ambiguities, and the large object deformations.

We propose an approach for tracking deformable curvilinear objects using solely
visual information from one or more calibrated cameras. The key idea is to formu-
late the shape estimation as a deformable 1D template tracking problem. The object is
first textured with a pattern of different alternating colors. The tracking problem is then
expressed as an energy minimization over a set of control points parameterizing a 3D
NURBS modeling the object. Assuming the object’s in-extensibility, we propose a novel
energy based on a texture-sensitive distance map.

We demonstrate the benefits of this energy in synthetic and real experiments, using
data illustrating the deformation and manipulation of a thread with a da Vinci robot. In
particular, we show that the approach allows for deformable tracking in the absence of
normal motion along the curve, a challenging practical situation that occurs when the
thread is dragged by one extremity.

1 Introduction

Threads and wires are deformable 3-dimensional (3D) and curvilinear objects which are
commonly manipulated by humans in various medical and manufacturing tasks. Several
applications, including computer-assisted evaluation, augmented reality guidance, and au-
tonomous robotic manipulation [14, 15, 20] would benefit from the real-time estimation of
the 3D shapes of these deformable objects from images. This estimation is however chal-
lenging due to multiple factors: 1) little information is available within an image to visually
detect and distinguish a curvilinear object due to its thin and usually uniform appearance;
2) different 3D shapes may lead to the same visual perception, even in a stereo setting in
case portions of the objects lie in an epipolar plane; and 3) the motions and deformations can
be large, depending on the stiffness of the object. Additionally, one desired property of the
tracking in the aforementioned applications is the possibility to track consistently specific
points along the object, such as the extremities or the mid-point.
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Figure 1: Two da Vinci instruments manipulating a thread textured with a color pattern (left)
and corresponding 3D tracking model (right).

Common curvilinear objects usually have a uniform appearance. Even though different
constraints, like in-extensibility and motion continuity, can be used to estimate the shape
more tractably, the tracking of a curvilinear object with uniform appearance suffers from
visual ambiguities, such as projective ambiguities or drift along the curve. In particular, the
curvilinear property of the object is not a sufficient cue, as the environment in which the
object is manipulated often contains multiple edges. The solution proposed in this paper is
to texture the object with a multi-color pattern, namely a one-dimensional template. Using
more that a single color makes the tracking more robust to visual ambiguities, as illustrated
in fig. 2. Moreover, such a texture is coarse enough to be reliably detected on a curvilinear
object, contrary to feature points.

In the proposed approach, we model the deformable object directly in 3D with a ra-
tionale non-uniform B-spline (NURBS) and formulate the tracking problem as an energy
minimization over the spline control points. We propose an energy containing three terms to
enforce the curvilinear and texture appearances of the object, while maintaining an approx-
imate arc-length parameterization. The advantage of using a single 3D model, as opposed
to 2D models coupled by the epipolar geometry, as used in [5] for contour tracking, is the
immediate incorporation of natural 3D constraints, such as length constancy. Additionally,
using the projective property of NURBS, the 2D splines can be directly computed from the
3D control points using the known projection matrices. The approach also generalizes to an
arbitrary number of images.

To enforce the texture appearance, minimizing the sum of square differences between the
texture template and the image (direct tracking), as for instance done for tracking deformable
surfaces [18], seems a natural choice. Such a term is however not robust to larger motions
due to the thin structure of the object. The convergence radius is small and using image
smoothing to increase the radius causes the object’s texture to become lost in the process.
For this reason, we propose to define the texture appearance term from a texture sensitive
distance map, indicating for each texture element the distance to the closest matching image
pixel.

Our contribution is twofold: 1) we tackle a challenging problem that is needed by the
robotics community but usually circumvented due to its difficulty; 2) we propose and study
a novel approach based on 1D textures.

The main application targeted in this research is suture tracking during tele-surgery, for sur-
gical skills evaluation and robotic automation. Without loss of generality, we therefore focus
in this paper on tracking a thread which is remotely manipulated by the instruments of a da
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(a) The texture anchors the model (dotted line) on the (b) The texture helps to discriminate between possible
object (continuous line). planar configurations.

Figure 2: Example of ambiguities resolved by the use of a 1D texture on the object.

Vinci robot as shown in fig. 1.

The remainder of this paper is as follows: section 2 describes the related work, and sec-
tion 3 describes the thread modeling and tracking approach. Section 4 presents comparisons
and experiments on synthetic and real data. Section 5 discusses and concludes this work.

2 Related work

Methods for robotic automation of tasks that involve the manipulation of a thread, such as
knot tying, have been presented in [14, 20]. These works, however, do not perceive the
thread. Instead, variability in the thread location and the need for perception are suppressed
either by the use of pre-determined initial conditions [20] or by the use of a third arm [14].

In [10], the physical model proposed in [3] for graphical simulation of flexible rods is
used to estimate the static shape of a thread in an engineered environment. The authors first
estimate the physical parameters, such as twisting and bending coefficients. The 3D shape of
the thread is then iteratively reconstructed edge by edge by starting from one given extremity
and using a precise image segmentation. In spite of the great interest of this modeling for au-
tomatic manipulation, it is currently difficult to use such an approach for tracking during real
thread manipulation. An immediate challenge is to detect and model the physical contacts
between the thread and the environment, that affect the physical modeling. Additionally, the
physical properties of the thread can change during its manipulation due to the damaging
effects of the graspers. In previous work [16], a 3D thread tracking approach has been de-
veloped for automatically cutting a thread using a robotic tool. The approach is based on
discrete optimization and only makes use of ridge information from the images, but requires
constraints on the locations of the thread extremities that are provided by the tool positions.

Different approaches have been proposed in the computer vision community to track
contours using snakes or B-splines within 2D images or 3D volumetric data [1, 7, 9, 11].
These approaches usually use edge information or orthogonal profiles to attract the curve
to the nearest contour. Shape priors can also be included [9] to constrain the deformations
and make the 2D tracking robust to clutter. Contours differ however from pure curvilinear
objects, because they have a stable visual side that provides more visual information. Ad-
ditionally, they do not deform as much as a thread does. It should also be noted that these
approaches do not evaluate whether specific points can be tracked consistently along the
contours, but only focus on the shape. The tracking of 2D deformable surfaces has been
studied in [2, 18]. But compared to a deformable thread, such objects provide more visual
information and often less deformations.


Citation
Citation
{Mayer, Gomez, Wierstra, Nagy, Knoll, and Schmidhuber} 2006

Citation
Citation
{vanprotect unhbox voidb@x penalty @M  {}den Berg, Miller, Duckworth, Hu, Wan, Fu, Goldberg, and Abbeel} 2010

Citation
Citation
{vanprotect unhbox voidb@x penalty @M  {}den Berg, Miller, Duckworth, Hu, Wan, Fu, Goldberg, and Abbeel} 2010

Citation
Citation
{Mayer, Gomez, Wierstra, Nagy, Knoll, and Schmidhuber} 2006

Citation
Citation
{Javdani, Tandon, Tang, O'Brien, and Abbeel} 2011

Citation
Citation
{Bergou, Wardetzky, Robinson, Audoly, and Grinspun} 2008

Citation
Citation
{Padoy and Hager} 2011{}

Citation
Citation
{Amini, Curwen, and Gore} 1996

Citation
Citation
{Geiger, Gupta, Costa, and Vlontzos} 1995

Citation
Citation
{Isard and Blake} 1998

Citation
Citation
{Kass, Witkin, and Terzopoulos} 1988

Citation
Citation
{Isard and Blake} 1998

Citation
Citation
{Bartoli, Perriollat, and Chambon} 2007

Citation
Citation
{Richa, Poignet, and Liu} 2008


4 PADOY, HAGER: DEFORMABLE TRACKING OF TEXTURED CURVILINEAR OBJECTS

The closest application to ours comes from the medical community, where the tracking
of purely curvilinear objects such as vessels or catheters is necessary. [19] track vessels and
[8, 21] track catheters in 2D angiographic images. In addition to the differences in setups
and image modalities, since the physical displacements are constrained by human anatomy,
the deformations are also different from those generated when manipulating a thread.

3 Methods

In the following section, we assume that the thread is observed by two calibrated cameras
with known projection matrices P and P». The two corresponding images are denoted by I
and I. Note that the approach described below does not depend on the second camera, as
long as a 3D initialization of the tracking is provided.

3.1 Thread modeling

We model the thread using a low dimensional parameterization based on a NURBS spline
representation [17]. NURBS have been used successfully for static curve reconstruction
[13, 22] and are also useful for 3D curve tracking due to their projective invariance [16].
The 3D curve modeling the thread is denoted by cb (Q,u), where Q is a set of n 3D control
points and u is the curve parameter:

CP(Q,u) = ZR,d )Qu, uc0,1]. 1)

R; 4 are the rationale spline basis functions. NURBS curves allow weights for the control
points. They are set to 1 in the 3D curve to reduce the dimensionality of the estimation.
The 2D spline projections are then denoted by C;? and C3P and directly defined from the
projected 3D control points by using suitable weights [16, 17, 22].

The color pattern texturing the thread is composed of alternating colors and represented
by a general function associating the curve parameter u to its color c(u):

c(u):uel0,1] — S,

where S is a color space. For generality, we do not require the two cameras to possess the
same color-calibrations, but maintain instead two representations of the texture by using two
functions: ¢; with i € {1,2}. The pattern representation is supposed to be known in advance
or to be learned from the first image. Figures 2(a) and 2(b) illustrate how texturing the
object with a color pattern provides additional constraints that address the drift and projective
ambiguities mentioned in the introduction. Combined with length constancy and smoothness
constraints, the texture addresses most of the ambiguities in practical situations, as long as
the pattern is chosen such that the maximum length of each color segment is small enough
so as not to allow for multiple bendings of the thread within the segment.

It is important to note that, for consistency, ¢ and C°P need to be defined using the same
curve parameterization. Under the in-extensibility assumption, we choose to use an arc-
length parameterization. Because rationale curves cannot be approximated exactly by arc-
length, except for lines [4], we use an approximate arc-length parameterization, as explained
below.
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3.2 Energy

The tracking problem is formulated as an energy minimization over the spline parameters Q.
The energy E is defined as the sum of two terms: E = E,y + Ej;,;, where the first term is a
data term enforcing the curvilinear and texture appearances. The second term enforces the
in-extensibilty constraint. We define the data term as

Eeu =515 Z Z (oD (€2 (1)) + B (CP () i) )
+ 1 i=1k=
where Df“b (x) is a distance map indicating the distance to the closest ridge from position x
in image /; and D!*"(x,u) is a texture sensitive distance map indicating the distance to the
closest pixel with color ¢;(u). (uy,...,ux) defines a uniform sampling of the parameters and
o, B are weights balancing the two terms.
An additional regularization term enforces the in-extensibility constraint. We noticed in

our experiments that a global length constancy constraint forcing (1 — fol |c3P , (u)||du/Lyer)?
to zero, where L,,¢ is the initial length, and used in combination with the aforementioned
appearance constraints, fails to maintain proper parameterization during deformations. This
is due to the coarse texture information. We therefore introduce a term that penalizes both
local changes of length and local changes of arc-length parameterization:

Uy 3Dl
7R JuFICT (u) || du
mt Z 1- s Lloc ’ (3)

with L;,. = L,.y/K and y being a weighting coefficient. This new term also allows for faster
tracking: it is not required to recompute at each iteration the arclength parameterization nor
the values of the basis functions at the sampling points, which are also defined from the
arclength parameterization.

Minimizing the energy E is a non-linear least-squares problem with respect to the 3D
control points Q. In our experiments, we use the Levenberg-Marquardt approach for mini-
mization. When using a pair of stereo images, the Jacobian obtained by stacking the partial
derivatives is of size (5K +4) x 3n. The discrete functions D/* and D!** are stored as im-
ages, as explained below, and their derivatives are computed using Sobel filters and image
interpolation.

3.3 Distance maps

To compute Dﬁ“b (x), aridge detector suitable for a tubular object is first applied on the image
I;. We use a Frangi filter [6], which analyses the images’ Hessian structure and enables
precise localization of the ridge center. The ridges are then segmented using a user-defined
threshold and D!*?(x) is defined by the distance map over the segmented ridges.

Di*(x,u) is computed from automatic analysis of the function ¢(«) to generate an ap-
propriate color model of the pattern. The one-dimensional texture is first clustered into con-
sistent color clusters (b,).. g using Gaussian mixture models. During tracking, the different
texture colors are segmented in the current images using the computed Gaussians. D (x, u)
is obtained from distance maps computed over the R segmentations of /; that correspond
to the R different color clusters of the pattern. To ensure robustness to small occlusion
and illumination changes, morphological closing is applied on the segmentations before the
computation of the distance maps.
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3.4 Geometric optimization

Due to the large deformations encountered by the thread, it may be necessary of adapt the
number of knots/control points of the spline during the tracking. The employed strategy
evaluates an approximate spline curvature using the control points and adds or removes con-
trol points using an approach similar to the one presented in [12] for the physical simulation
of a thread.

4 Experiments

4.1 Synthetic experiments

We present in this section several experiments that demonstrate the usefulness of the texture.
The first experiments analyze the convergence of the approach and the influence of the size
of the color stripes. In particular, they show that the texture reduces the tracking error in
the presence of larger displacements. The last experiment shows that the texture allows for
accurate tracking in situations where the thread is dragged by one end and does not have any
motion normal to the curve.

4.1.1 Definition of the tracking error

Most works in curve tracking evaluate the error by using a distance between the computed
curve and a ground truth (gt) curve [8, 21]. Such errors, that we call curve errors, can be
defined symmetrically as

el =ACP.ClP) and €} = ZA c.cii) 4)

with
A(C,Cyt) = < / in (C (1), Cat )+ / dyin (Cot (1), C)du) , )

where d,,;, is the usual Euclidean distance between a point and a curve. These curve errors
are not fully suitable for thread tracking and manipulation, because they do not properly
evaluate the tracking of specific points. Supposing the thread is in-extensible, in the case of
tracking a suture composed of a needle and of a thread, one is interested in tracking points at
specific distances behind the needle, so that they can for instance be used to grasp the thread.

We therefore define two arclength errors eacl and e’ ot D based on r specific points from the
thread uniquely defined by their arclength parameters {vi|1 <k <r}:

1 2 r
=~ Z||C3D vi) = Col i)l dcl_?ZZHCZD vi) =Cig )l (6)

In the following experiments, we use three points defined by v = 0.25,v, = 0.5,v3 = 0.75.
Since the thread extremities are only constrained by one side, we exclude them from this
evaluation to clearly show the advantage of the pattern for points inside the thread.
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4.1.2 Convergence experiments

In these experiments, a 3D virtual thread as shown in fig. 3(a) is projected, together with its
pattern, on a white background. The 3D tracking model is then initialized at the position of
the virtual thread and randomly perturbed in 3D by rigid translations. The perspective pro-
jection creates various initial 2D configurations. Then, several tracking approaches based on
different cost functions are compared on the synthetic images to recover the original thread
shape. In this process, since synthetic data is used, the ridge and texture distance maps do
not contain any outliers. We present results averaged over 1000 random initializations.
The original stereo camera from the da Vinci robot that we use for the real experiments has
a small baseline (Smm) for a large focal length (1770px). In order not to bias the error com-
putations by this very specific setup, where small 3D displacements may be hardly visible
in the images for a thread located at about 9 cm away from the camera, we use a baseline of
2cm in the synthetic experiments.

First, fig. 3(b) shows the error eaCl while varying the two weight parameters o, 3 in the
cost function. In particular, we notice that the absence of a pattern term ( = 0) causes a
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[ ACL3D (mm) | CRV 3D (mm) | ACL 2D (px) [ CRV 2D (px) [ LMITER

Tub 0.52 (£ 0.47) | 0.42(£0.53) | 9.21 (£ 8.47) | 3.41(* 5.04) 59.1
Tex 0.20 (£ 0.12) | 0.14 (£ 0.08) | 0.75 (£ 0.30) | 0.41 (& 0.14) 435
Tub + Tex || 0.09 (£ 0.05) | 0.06 (£ 0.03) | 0.53(+0.21) | 0.27 (& 0.06) 63.8

Table 1: Tracking motion along the curve. Errors using three different cost functions.

larger error Detailed convergence results are displayed in fig. 4 as a function of the initial 2D

error eac] ot between the initial randomly perturbed 3D tracking model and the ground truth.

Fig. 4(a) and 4(c) show the errors e ot D and eaCl for three cost functions: the curve Tub+Tex
has parameters o = § = 4, the curve Tub has parameters o = 4, = 0 and the curve Tex
has parameters o = 0, 8 = 4. One observes clearly that the presence of the texture reduces
the errors, especially when the initial displacement increases. Fig. 4(b) shows that the usual
curve error egg, contrary to the arclength error eacl, fails to capture the proper tracking error.
Finally, fig. 4(d) shows the errors in maintaining the initial length after convergence. The
error is defined as M and presented as a percentage. We notice that the use of
the texture also helps to maintain the thread length in the multi-objective function that is
optimized.

The convergence ability is both related to the size of the color pattern and to the initial
displacement. This is illustrated in fig. 3(c) which shows the error eﬁﬁ as a function of both
the pattern size, defined as the ratio of the length of one color segment to the total thread
length, and of the initial displacement error eﬁg’gt. For a fixed pattern size, the errors are
computed over 1000 random initializations. The surface shows two trends: the initial 2D
image displacement, starting from which the tracking fails, increases with the pattern size.
This occurs up to a pattern size of about 30%. After this value, the pattern fails to improve

the tracking, because there are too few color changes to constrain the convergence.

4.1.3 Motion along the curve

In this experiment, we evaluate the tracking approach against a pure tangential motion. A
predefined 3D path is defined as shown in fig. 3(a). A virtual 3D thread follows this path
in 30 displacements. The 3D tracking model is correctly initialized at the initial virtual
thread position. The synthetic images, containing the projections of the virtual thread on a
white background, are then used for the tracking. Tracking errors are displayed averaged
along the whole path in table 1 for the three cost functions described previously. We see
that the texture permits to accurately track tangential motion along the curve. When using
only tubular information, which is equivalent here to using a mono-color thread, the tracking
model tends to bend in the depth direction to satisfy both the length and visual constraints
for this small baseline. Table 1 also indicates the average number of iterations required up to
convergence for each cost function.

4.2 Real experiments

We have recorded several videos of an operator manipulating a thread over a background
containing edges, using a da Vinci robot, to further evaluate the tracking qualitatively. Ma-
nipulations involve deformations in multiple directions in 3D space, laterally, and in depth,
with the thread being grasped at different positions. "Motion along the curve" is demon-
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(b) A different 3D view of the tracking spline, where the arrow indicates the camera direction.

Figure 5: Tracking illustration on two sequences showing large thread deformations.

strated by passing the thread, attached to a needle or not, through a ring or by dragging it
along obstacles.

We use half-size full high-definition (HD) stereo images to perform the tracking. These
images are obtained with a thread located at roughly 9cm in front of a stereo camera with
a baseline of 5Smm and a focal length of 1770px. The thread is of length 8cm and contains
nine color stripes. Results of the tracking with overlay of the 3D reconstructed thread are
displayed in fig. 5 and available in the demonstration video. Due to the small baseline, a few
projective ambiguities are not always penalized by the data term, leading to two limitations
in the reconstruction: 1) the extremities tend to curve in the depth direction as they are
constrained only on one side; 2) small bendings in the depth direction sometimes occur along
the thread. These two effects are especially visible in thread portions lying in the epipolar
plane, but limited due to the constraints imposed by the pattern and the in-extensibility. As
typical in visual tracking, one also notices that incorrect distance maps can throw the tracking
off, especially if complete colors stripes are not detected. We therefore perform a slight over-
segmentation of the colors and rely on the ridge detector to enforce proper localization on the
thread centerline. Our current implementation runs on two cores (2.40 GHz) at about 10 fps.
Using regions of interest and GPU parallelization to perform the image processing would
significantly increase the frame rate and allow for tracking on the full stereo HD images.

5 Discussion and conclusion

We have presented an approach for tracking in 3D deformable curvilinear objects, such as a
thread. This is a challenging problem due to the thin structure of the object and the lack of
visual information available to reliably perform the tracking. In particular, as shown in our
experiments, in the case of curvilinear objects with uniform appearance, the tracking is lost
upon motion along the curve. Since it is not realistic to mark thin objects with distinguishable
feature points, we instead propose a solution consisting of texturing the curvilinear object
with a 1D pattern. We then formulate the tracking as a 3D NURBS estimation problem and
propose a cost function that enforces both the tubular and texture appearances of the object
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as well as the arclength parameterization of the 3D spline model. We show in synthetic
experiments that this approach allows for accurate tracking by using a new error based on
curve points uniquely defined by their arclength. We also demonstrate results on challenging
videos in which a thread is manipulated by the tools of a da Vinci robot.

In future work, we plan to improve the modeling for tackling scenarios in which the
thread can undergo major deformations and occlusions, like during knot tying manipulations.
In particular, we plan to integrate prior information about the current temporal step of the
manipulation task, which can be learnt from demonstration.

Acknowledgments: This work is funded by NSF grant CPS-0931805. Any opinions, findings,
and conclusions or recommendations expressed in this material are those of the authors and do not
necessarily reflect the views of the National Science Foundation.
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