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Abstract

We present a fully automatic arm and hand tracker that detects joint positions over
continuous sign language video sequences of more than an hour in length. Our frame-
work replicates the state-of-the-art long term tracker by Buehler et al. (IJCV 2011), but
does not require the manual annotation and, after automatic initialisation, performs track-
ing in real-time. We cast the problem as a generic frame-by-frame random forest regres-
sor without a strong spatial model.

Our contributions are (i) a co-segmentation algorithm that automatically separates
the signer from any signed TV broadcast using a generative layered model; (ii) a method
of predicting joint positions given only the segmentation and a colour model using a
random forest regressor; and (iii) demonstrating that the random forest can be trained
from an existing semi-automatic, but computationally expensive, tracker.

The method is applied to signing footage with changing background, challenging
imaging conditions, and for different signers. We achieve superior joint localisation re-
sults to those obtained using the method of Buehler et al.

1 Introduction
There is growing evidence that large-scale weakly supervised learning can contribute to sign
language recognition: using the correlations between subtitles and signers in signed TV
broadcasts both Buehler et al. [3] and Cooper and Bowden [7] were able to automatically
extract sign-video pairs from TV broadcasts; these automatically extracted sign-video pairs
can then be used as supervisory material to train a sign language classifier [4]. However,
current research in this area has been held back by the difficulty of obtaining a sufficient
amount of training video with the arms and hands of the signer annotated. This is a great
pity because there is a practically limitless supply of such signed TV broadcasts.

The standard approach of Buehler et al. [5] for tracking arms and hands requires manual
labelling of 64 frames per video, which is around three hours of manual user input per one
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Figure 1: Arm and hand joint positions are predicted by first segmenting the signer using
a layered foreground/background model, and then feeding the segmentation together with a
colour model into a random forest regressor.

hour of TV footage. In addition, the tracker (by detection) is based on expensive compu-
tational models and requires hundreds of seconds computation time per frame. These two
factors have hindered the large scale application of this method.

In this paper we describe a method for tracking joint positions (of arms and hands) with-
out any manual annotation and, once initialised, the system runs in real-time. The three
key ideas are (i) for signed video the signer can be segmented automatically using co-
segmentation, (ii) given the segmentation, the joint positions can be predicted using a random
forest, and (iii) the random forest can be trained using Buehler et al.’s tracking output, with
no manual annotation. We show that the random forest trained in this manner generalizes to
new signers. Figure 1 illustrates the processing steps.

In more detail, our source material consists of signed TV broadcasts, such as BBC news
footage or educational programs. This is very challenging material to segment and determine
human joint positions on for a number of reasons that include self-occlusion of the signer,
self-shadowing, motion blur due to the speed of the signing, and in particular the chang-
ing background (since the signer is superimposed over a moving video that frequently even
contains other people, e.g. see Figures 1 and 3).

Random forests for pose estimation. In recent years there has been increasing interest
in random forest/fern-based methods for tasks such as image classification [2, 19], ob-
ject detection [8, 11], segmentation [12, 25], head pose estimation [1] and feature extrac-
tion [18, 23]. In particular we are interested in the work on human pose estimation, where
random forests have been used to obtain head pose [9], detect body parts [20] and infer full
body pose [13, 24]. However, the success of these pose methods depends upon the use of
depth imagery which is colour and texture invariant, while also making background subtrac-
tion much easier. Here we propose an upper body pose estimation method that exploits the
efficiency and accuracy of random forests without the need for depth images, and instead use
raw RGB images with only a partially known background (as described below).

Co-segmentation for signer extraction. Co-segmentation methods [6, 14, 16, 22] con-
sider sets of images where the appearance of foreground and/or background share some
similarities, and exploit these similarities to obtain accurate foreground-background seg-
mentations. In our case we exploit the fact that sign language broadcasts consist of a layered
model of the foreground and two separate backgrounds, one that is static throughout each
video and another that changes with each frame. The signer stands partially against the static
background and partially against the changing background (which they are describing).

To this end we propose a co-segmentation algorithm that automatically separates signers
from any signed TV broadcast by building a generative layered model. We use this layered
model of the signer in conjunction with a foreground colour model to provide a suitable input
representation for the random forest regressor, superior to using the raw input image itself,
and not requiring depth data.
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FG DBG SBGFG DBG SBG

Figure 2: Generative layered model of each frame. The co-segmentation algorithm sepa-
rates the signer from any signed TV broadcast by building a layered model consisting of a
foreground (FG), dynamic background (DBG) and static background (SBG).

2 Co-segmentation Algorithm
The goal of the co-segmentation algorithm is to segment the overlaid signer from each frame
of the broadcast. We exploit the fact that sign language broadcasts consists of an explicit
layered model as illustrated in Figure 2. In the spirit of a generative model, we exploit these
inherent layers to provide an accurate segmentation of the signer.

The static background layer (SBG) essentially consists of the framing (around the ac-
tual/original broadcast) that has been added by the studio. As can be seen in Figure 3, the
static background is partially revealed and partially occluded in each frame depending on
the position of the signer. In a similar manner to how a “clean plate” is constructed in film
post-production, by looking through the whole video and combining the partially revealed
static backgrounds one can nearly fully reconstruct the actual static background. This layer
can then be exploited when segmenting the signer.

The dynamic background layer (DBG) consists of a fixed rectangle, where the original
video is displayed, but is always partially covered by the signer and changes from one frame
to another. Its colour information, for the region where it does not overlap a bounding box
on the signer, is modelled separately and forms a background distribution for a subsequent
segmentation of the signer.

Finally, the foreground layer (FG) consists of the moving signer. By assuming that the
colour distribution of the signer remains constant we can build an accurate foreground colour
model for the whole video.
Algorithm overview. The input to the co-segmentation algorithm is a signed TV broadcast
video, and the output is a foreground segmentation, a quality score for the segmentation, the
head position and a colour model for the skin and torso. These will be used in the random
forest regressor. The algorithm consists of two main steps:

Automatic initialisation (per image sequence). To exploit the inherent layered model
we initialise the algorithm by determining the “clean plate” (explained above), the dynamic
rectangle and the foreground colour model. The details of how this “initialisation set” is
obtained are given in Section 2.1.

Segmentation with a layered model and area constraints (per frame). The initialisation
set is then used to derive an accurate hard segmentation of the signer. The clean plate and an
area constraint are used to refine an initial rough segmentation. The details of this method
are given in Section 2.2.

2.1 Co-segmentation initialisation
Our goal here is to obtain the layers and their layout that are common to the video sequence
(in order to enable the subsequent per-frame segmentation). In detail, we wish to obtain the
regions shown in Figure 3, as well as the foreground colour distribution. Our approach is to
treat each frame as being generated from a number of layers, as depicted in Figure 2, and
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Figure 3: Co-segmentation. (a) the original frames; (b) the dynamic layer (rectangle spanned
by the green dots) and the permanently fixed background (in red); (c) the rough segmentation
with clamping regions for running graph cut. A is the permanently fixed background; B is
the clamping region for the dynamic background; C is a soft foreground clamp and D is a
hard foreground clamp. (d) the initial segmentation; (e) segmentation after clean plate and
area size refinements.
to thereby solve for the layers and layout. This problem differs from typical applications of
generative layered models for video, e.g. [15, 17] since part of the background in the video
is always moving so we have a dynamic rather than fixed layer. The creation of the layered
model can be broken down into a step per layer:
Dynamic background. We wish to find the rectangle that contains the DBG, and further-
more divide it into a region where the signer may overlap, and another where the signer
never reaches (see Figure 3c). The latter region will be used to define per-frame background
colour. To this end we find pixels that change values for the majority of frames and compute
their rectangular bounding box, as shown in Figure 3b. Similarly, as a by-product, we ob-
tain an area that is permanently static throughout the image sequence (region A in the same
figure). This area will be used as a permanent BG clamping region.
Static background. Once the DBG has been found we find the SBG. As described above
the SBG can be viewed as consisting of a “clean plate”. The idea behind this is that by
looking through the whole video and combining the partially revealed SBGs one can nearly
fully reconstruct the actual SBG. We can then say with near-certainty whether a pixel is FG
or BG. The clean plate is obtained by roughly segmenting a random set of frames into FG
(signer) and BG using a graph cut algorithm. The regions used to obtain the FG and BG
distributions are illustrated in Figure 3c. In particular, areas selected relative to the position
of the signer’s face (the face detection method is described below) is used to initialise the FG
colour distribution. Given these segmentations, the clean plate (example shown in Figure 3d)
is obtained as a median over the BG.
Foreground colour model. Here the aim is to obtain the signer colour distribution (which
is assumed approximately constant throughout the sequence). The colour distribution (which
is represented by a histogram) is obtained from the rough FG segmentations (see Figure 3c,
computation described above) using frames where the colour histograms of the FG and DBG
differ the most. The high colour difference increases the likelihood that there is a high
contrast between the FG and BG and thus that the segmentation is correct.
Face detection. Face detection is used for initialisation and frame-by-frame segmentation.
Detection of both frontal and profile view faces is done by choosing between the OpenCV
face detector (high recall for frontal faces) and a face detector based on upper body detec-
tion [10] (lower recall but detects profile views) according to their confidence values.

2.2 Segmentation with a layered model and area constraints
Having finished the initialisation step we now have a layered model that can be employed
for deriving a hard segmentation of the signer. The initialisation set is used to (i) compute a

Citation
Citation
{Jojic and Frey} 2001

Citation
Citation
{Kumar, Torr, and Zisserman} 2008

Citation
Citation
{Ferrari, Marin-Jimenez, and Zisserman} 2008



PFISTER et al.: AUTOMATIC AND EFFICIENT LONG TERM ARM AND HAND TRACKING 5

separate colour model for the dynamic background; (ii) improve the segmentation by com-
paring each pixel against the clean plate (yields near-certainty about whether a pixel is FG or
BG as the BG is known); and (iii) provide a video-wide FG colour model (removes the need
for finding accurate FG colour models for individual frames). Finally the FG segmentation
is refined according to its area size (this corrects the segmentation where the FG catches part
of the DBG because the colours of FG and DBG are similar). In detail there are three steps:
Initial segmentation. The aim of this step is to provide an initial segmentation that can be
refined in the next steps. The segmentation uses GrabCut [21], with the FG colour model
provided by the initialisation set and, as in Ferrari et al. [10], with the FG clamped in areas
based on the face location (Figure 3c). The BG colour distribution is known from the DBG.
Refining the segmentation using the clean plate. In this step the initial segmentation is
refined by using the clean plate of the SBG: the pixel is clamped to FG if the intensity of
the segmentation and clean plate are dissimilar; otherwise clamped to BG. As illustrated in
Figure 3e, by doing this we can effectively derive a perfect segmentation in the static layer
for all pixels in the clean plate.
Refining the segmentation using the area size of the foreground. After the segmenta-
tion has been refined by the clean plate the FG is shrunk if it is much bigger than the average
segmentations in the initialisation set. This is achieved by adding a constant to the graph cut
unary potentials of the DBG (as this increases the likelihood that a larger part of the DBG
is labelled as BG, hence also reducing the size of the FG). As illustrated in Figure 3e, this
corrects the segmentation in frames where the FG catches part of the DBG because the FG
colour model is similar to DBG colours.

The segmentation still fails in certain difficult cases, e.g. when the colours of the FG and
BG are very similar or when the face detector fails. To this end we compute a segmentation
quality score based on the median FG area size.
Colour model initialisation At this stage we have a fully refined segmentation that is
rated by a segmentation quality score. However, joint position prediction also benefits from
information not explicit in the foreground segmentation, e.g. the colour of the hands and
torso. The skin colour distribution comes from a patch of the face over several frames; the
torso colour distribution comes from a set of FG segmentations from which the colours of
the face/skin are automatically removed. The full segmentation, segmentation quality score,
head position and colour model form the input to the random forest regressor for each frame.

3 Random Forest Regression
We cast the task of localising upper body arm joints and head position as a multi-class clas-
sification problem, classifying each image pixel into one of 8 categories l ∈ {head centre,
left/right wrist, left/right elbow, left/right shoulder, other} using a random forest classifier
in a sliding-window fashion. From here on we also refer to “head centre” as a joint (see
Figure 4d). As shown in Figure 4a, the input to the random forest comes from the colour
model image after co-segmentation.

The random forest classifier uses simple features to make classification extremely com-
putationally efficient. Classification to a discrete class label l ∈ {li}, for each pixel q across
the image is performed in a sliding-window fashion. We classify the pixels by computing
the conditional distribution p(l|Wq, I) for each label, where I is the colour model image and
Wq is the set of pixels in the window surrounding q. The random forest is an ensemble of T
decision trees, as illustrated in Figure 4b. Each tree t consists of split nodes which perform
a true or false test on incoming pixels. Pixels are recursively pushed down either the left
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(a) Color model (b) Random forest (c) PDF of joints (d) Estimated joints
Figure 4: Estimating joint positions. (a) input colour model image; (b) random forest clas-
sifies each pixel using a sliding window and learnt test functions; (c) probability density
function of each joint location, shown in different colours per joint (more intense colour
implies higher probability); (d) joint estimates, shown as small circles linked by a skeleton.

or right branch depending upon the outcome of the test. When a pixel reaches a leaf at the
bottom of the tree a learnt probability distribution pt(l|Wq, I) assigns the pixel a probability
for class label l. The final conditional distribution p(l|Wq, I) is obtained by taking an average
across all trees in the forest as follows:

p(l|Wq, I) =
1
T

T

∑
t=1

pt(l|Wq, I) (1)

We use very efficient test functions f (.) at the nodes of the trees which only compare pairs
of pixel values [23]. A pixel q is represented by xq = (x1

q,x
2
q,x

3
q) where x1

q, x2
q, x3

q are the
skin, torso and background colour posterior values at pixel q respectively [1]. The function
f operates on a pair of pixels (a,b) from within the window Wq and produces a scalar value
which is compared against a threshold value υ – see Figure 4a. These tests can take one of
four forms: f (a) = xc

a, or f (a,b) = xc
a−xc

b, or f (a,b) = xc
a+xc

b, or f (a,b) = |xc
a−xc

b|, where
c ∈ {1,2,3} indexes the type of colour posterior value to choose.
Training of the forest. In each frame of the video circular patches of radius 13 pixels cen-
tred on joint locations are labelled as that joint, with all other pixels labelled as ‘other’. Each
tree in the forest is trained by randomly sampling a diverse set of points Sn from the training
frames. Each decision tree is trained recursively, with the split function and threshold at each
node chosen to split the data reaching that node as “purely” as possible such that points be-
longing to the same class are sent to the same child node. The impurity of a split is measured
using the Gini measure: i(Sn) = 1−∑

l
p(l|Sn)

2, (2)
where p(l|Sn) is represented by a histogram of the dataset Sn over possible labels l at node
n. The Gini impurity is chosen for its efficient implementation compared to e.g. information
gain. Because there are many more ‘other’ pixels than ‘joint’ pixels, we balance the dataset
by normalising the number of elements in the bin labelled l by the total number of elements
in the training set labelled l. The parameters of split nodes are learnt by trying all possible
test functions f (.) and colour posterior types c for a randomly sampled offset pixel (a,b).
The offset pixel is uniformly sampled within Wq, where q ∈ Sn. The data entering the node
is split into a left subset SL

n if f (.)< υ or otherwise to a right subset SR
n .

The drop in impurity is measured as4i(Sn) = i(Sn)−PLi(SL
n)− (1−PL)i(SR

n ), where PL
is the fraction of data points that go to the left set. In each case the threshold value υ is
chosen to maximise4i(Sn). The whole process is repeated k times (we use k = 200) and the
set of parameters which maximise4i(Sn) overall is chosen as the winning decision function.
This process is recursively repeated for all nodes. A node is declared a leaf node, and not
split further, when (i) the maximum depth limit D of the tree has been reached or (ii) the
node is pure i.e. all points reaching the node have the same class label. A per-leaf probability
distribution pt(l|Wq) is stored at the leaf node, represented as a normalised histogram over
the labels of all data points reaching the node.
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(a) (b) (c) (d) (e) (f)
Figure 5: Joint estimation. (a) and (d) show a colour model image from which we obtain
probability densities of joint locations shown on top of colour model edge image in (b) and
(e). Different colours are used per joint (higher intensity colour implies higher probability).
Maximum probability per joint is shown as black crosses. The filled in circles linked by
a skeleton in (c) and (f) are estimated joints overlaid on faded original frame which are
compared with Buehler et al.’s ground truth joint locations, shown as open circles.

Assigning joint locations. A location for the joint l is found by using the output of the
random forest p(l|Wq) and estimating the density of joint proposals using a parzen-window
kernel density estimator with a Gaussian kernel. The position of maximum density is used
as the joint estimate.

See Figure 5 for an illustration of this method. A comparison against automatic ground
truth is also shown.

4 Experimental Results
First the co-segmentation algorithm is evaluated (Section 4.1); then the performance of the
joint position estimator is assessed (Section 4.2), and finally the computation time of the
methods is discussed (Section 4.3). Sample videos are available online.1

4.1 Co-segmentation
The co-segmentation algorithm is evaluated on the arm and hand segmentation ground truth
provided by Buehler et al. [5]. This ground truth consists of manually labelled left arm, right
arm and hand segmentations for 342 frames for one signer. As in [5], an overlap measure
is defined as o = T

⋂
M

T
⋃

M , where T is manual ground truth segmentations and M is the mask
generated from an estimated configuration. This overlap score is evaluated separately for the
left arm, the right arm and the hands. The overall overlap is defined as the mean over these
three values. The mean results are given in Figure 6. As expected the left arm is the hardest
to segment as it is always on top of a dynamic background.

Body part Overlap score
Left arm 0.911
Right arm 0.957
Hands 0.975
Mean 0.951

(a) (b) (c)
Figure 6: Co-segmentation evaluation. (a) the overlap scores for each body part; (b) example
of the ground truth; (c) the segmentation (blue) evaluated against the ground truth (green).

4.2 Random forest regression
The joint estimation method is evaluated in two experiments. The first experiment demon-
strates the effect of varying the most influential parameters of the random forest. The second
experiment tests the hypothesis that using the segmented colour posterior image (Seg+CP)

1http://www.robots.ox.ac.uk/~vgg/research/sign_language
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improves joint estimation results. This second experiment is conducted in two settings:
(1) training and testing on the same signer (single-signer forest), as reported by Buehler
et al. [5], and (2) training on multiple signers and testing on an unseen signer to demonstrate
generalisation (multi-signer forest).
Dataset. We train and test on five videos, each video containing a different signer. One
video typically contains over 40K frames. The training frames consist of the first 60% of
each video and the testing frames the remaining 40%. Joint location output from a slow
reliable tracker by Buehler et al. is used to assign labels to pixels in the training videos.
Sampling poses (training and testing). The forests are trained and tested on samples that
cover a diverse range of poses given by Buehler et al.’s tracker. Poses are clustered using
k-means into 100 clusters, and frames are uniformly sampled across clusters. Increasing the
diversity of poses in the training set increases generalisation to testing data and improves
accuracy on unusual poses. In the testing set it ensures that accuracy is not biased towards
poses which occur more frequently, e.g. “resting” poses between signs.
Training data. When training and testing on the same signer, each tree is trained on a
sample of 1,000 frames taken from a single video. Generalisation across signers is evaluated
using 5-fold cross validation: the random forests are trained on 4 signer videos and evaluated
on a 5th “held-out” video, and a sample of 1,000 frames from the training set (250 diverse
frames from each of the 4 videos) is used for training.
Testing data. All experiments compare against manually annotated ground truth. 200
frames containing a diverse range of poses from the testing set of each of the 5 videos were
annotated with joint locations (1000 frames in total).
Evaluation measure. An estimated joint is deemed correctly located if it is within a set
distance of d pixels from the ground truth. Accuracy is measured as the percentage of cor-
rectly estimated joints. The experiments use a distance of d = 5 pixels from ground truth
(signer shoulder width in Figure 4d ≈ 55 pixels).
Parameter optimisation experiment. Figure 7 shows the average joint estimation accu-
racy when varying the random forest parameters. It is noted that: (1) Regardless of input
type, the largest window width in the experiment (91 pixels) produced best results. Window
width is kept at this value in all experiments. (2) Maximum accuracy is obtained for single-
signer forests at a depth of 128, however for only a small drop in accuracy (< 1%) a large
speed increase in computation time (30%) can be achieved by using trees at depth 64. In
contrast, for silhouette input a larger tree depth increases accuracy significantly. Trees with
depth 64 have on average≈ 5,000 leaf nodes (0.1% of training pixels) indicating the trees are
highly imbalanced. (3) An optimal lower depth of 64 is necessary to help the multi-signer
forests generalise across unseen signers. (4) 8 trees in the forests produces best accuracy.
(5) Figure 8 shows that forests trained and tested on the same signer are more accurate for
smaller evaluation distance measures d than forests tested on unseen signers. However, the
penalty for a looser fit to ground truth is small if one wants to generalise over unseen signers.
Random forest vs Buehler et al. experiment. Tables 1 and 2 show the results for single-
signer and multi-signer forests respectively compared against manually annotated ground
truth joint locations. A comparison against Buehler et al.’s tracker is also shown. Table 1
shows the single-signer per-joint accuracy averaged over all training videos. The results are
shown for different inputs: (i) a raw colour pixel representation in LAB (LAB), (ii) colour
posterior on the whole image (CP), (iii) signer silhouette (S), (iv) segmented colour poste-
rior (Seg+CP). Using Seg+CP as input produces best results. Using LAB pixels performs
similarly to using CP in the single-signer case. Occasionally the segmentation misses the
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Figure 7: Effect of altering random forest parameters for different input types. (a) window
width, (b) & (d) depth of trees for single-signer & multi-signer forests respectively, (c) & (e)
number of trees for single-signer & multi-signer forests respectively.
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Figure 8: Per-joint average accuracy plotted against allowed distance from manual ground
truth in pixels. 80% accuracy is shown as vertical dotted lines.

hand against the dynamic background, causing CP to outperform Seg+CP for the right wrist
in the single-signer case. Table 2 shows that by using Seg+CP the multi-signer forests can
generalise better to unseen signers.

For both single-signer and multi-signer forests we observe the results to be on average
better than those of Buehler et al.’s. This suggests noisy data from Buehler et al.’s tracker is
smoothed over by more consistent data at the leaf nodes in the trees. The accuracy scores of
the random forests are promising even when measured tightly against ground truth joints (5
pixels leeway). This suggests very robust tracking can be achieved if a looser fit is required.

4.3 Computation time
The following computation times are on a 2.4GHz Intel Quad Core I7 CPU with a 320×202
pixel image. The computation time for one frame is 0.14s for the co-segmentation algo-
rithm and 0.1s for the random forest regressor, totalling 0.2s (5fps). The per-frame initialisa-
tion timings of the co-segmentation algorithm are 6ms for finding the dynamic background
layer and static background, 3ms for obtaining a clean plate and 5ms for finding the image
sequence-wide foreground colour model, totalling 14ms (approx. 24min for a 100K frames).
Each tree, as used in our single signer random forests, takes 4.5 hours to train.

5 Conclusion
We have presented a fully automatic arm and hand tracker that detects joint positions over
continuous sign language video sequences of more than an hour in length. Our framework
attains superior performance to a state-of-the-art long term tracker [5], but does not require
the manual annotation and, after automatic initialisation, performs tracking in real-time.
Acknowledgements: We are grateful to Lubor Ladicky for discussions, and to Patrick
Buehler for his very generous help. Funding is provided by the EPSRC.

Method Head R Wrist L Wrist R Elbow L Elbow R shldr L Shlder Average
LAB 98.0 63.9 85.8 67.6 79.2 87.4 86.1 81.1
CP 97.7 70.3 82.9 67.9 70.0 84.3 72.6 78.0
S 91.9 22.2 30.8 67.8 78.8 82.2 89.0 66.1
Seg+CP 97.6 64.9 84.1 72.5 80.2 86.8 92.0 82.6
Buehler et al. [5] 96.4 58.8 66.0 67.6 71.5 83.1 83.7 75.3

Table 1: Average accuracy of per-joint estimates for single-signer forests measured as 5
pixels from manual ground truth. Using Seg+CP outperforms all other input types.
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Method Head R Wrist L Wrist R Elbow L Elbow R shldr L Shlder Average
LAB 56.8 7.6 14.8 22.8 37.4 36.8 47.8 32.0
CP 93.8 52.9 80.4 30.8 62.1 75.7 79.4 67.9
S 88.4 15.6 18.4 59.8 78.6 85.0 91.4 62.5
Seg+CP 95.0 60.3 80.0 57.3 63.4 88.0 94.5 76.9
Buehler et al. [5] 96.4 58.8 66.0 67.6 71.5 83.1 83.7 75.3

Table 2: Average accuracy of per-joint estimates for multi-signer forests evaluated against
manual ground truth.

References
[1] B. Benfold and I. Reid. Colour invariant head pose classification in low resolution

video. In Proc. BMVC, 2008.

[2] A. Bosch, A. Zisserman, and X. Munoz. Image classification using random forests and
ferns. In Proc. ICCV, 2007.

[3] P. Buehler, M. Everingham, and A. Zisserman. Learning sign language by watching
TV (using weakly aligned subtitles). In Proc. CVPR, 2009.

[4] P. Buehler, M. Everingham, and A. Zisserman. Employing signed TV broadcasts for
automated learning of British sign language. In Workshop on Representation and Pro-
cessing of Sign Languages, 2010.

[5] P. Buehler, M. Everingham, D. P. Huttenlocher, and A. Zisserman. Upper body detec-
tion and tracking in extended signing sequences. IJCV, 95(2):180–197, 2011.

[6] Y. Chai, V. Lempitsky, and A. Zisserman. Bicos: A bi-level co-segmentation method
for image classification. In Proc. ICCV, 2011.

[7] H. Cooper and R. Bowden. Learning signs from subtitles: A weakly supervised ap-
proach to sign language recognition. In Proc. CVPR, 2009.

[8] A. Criminisi, J. Shotton, D. Robertson, and E. Konukoglu. Regression forests for ef-
ficient anatomy detection and localization in CT studies. In MICCAI workshop on
Probabilistic Models for Medical Image Analysis, 2011.

[9] G. Fanelli, J. Gall, and L. Van Gool. Real time head pose estimation with random
regression forests. In Proc. CVPR, 2011.

[10] V. Ferrari, M. Marin-Jimenez, and A. Zisserman. Progressive search space reduction
for human pose estimation. In Proc. CVPR, 2008.

[11] J. Gall and V. Lempitsky. Class-specific hough forests for object detection. In Proc.
CVPR, 2009.

[12] E. Geremia, O. Clatz, B.H. Menze, E. Konukoglu, A. Criminisi, and N. Ayache. Spa-
tial decision forests for MS lesion segmentation in multi-channel magnetic resonance
images. NeuroImage, 2011.

[13] R. Girshick, J. Shotton, P. Kohli, A. Criminisi, and A. Fitzgibbon. Efficient regression
of general-activity human poses from depth images. In Proc. ICCV, 2011.

Citation
Citation
{Buehler, Everingham, Huttenlocher, and Zisserman} 2011



PFISTER et al.: AUTOMATIC AND EFFICIENT LONG TERM ARM AND HAND TRACKING 11

[14] D.S. Hochbaum and V. Singh. An efficient algorithm for co-segmentation. In Proc.
ICCV, 2009.

[15] N. Jojic and B. Frey. Learning flexible sprites in video layers. In CVPR, volume 1,
pages 199–206, 2001.

[16] A. Joulin, F. Bach, and J. Ponce. Discriminative clustering for image co-segmentation.
In Proc. CVPR, 2010.

[17] M. P. Kumar, P. H. S. Torr, and A. Zisserman. Learning layered motion segmentations
of video. IJCV, 76:301–319, 2008.

[18] V. Lepetit and P. Fua. Keypoint recognition using randomized trees. IEEE PAMI, 28
(9):1465–1479, 2006.

[19] R. Marée, P. Geurts, J. Piater, and L Wehenkel. Random subwindows for robust image
classification. In Proc. CVPR, 2005.

[20] S. Nowozin, C. Rother, S. Bagon, T. Sharp, B. Yao, and P. Kohli. Decision tree fields.
In Proc. ICCV, 2011.

[21] C. Rother, V. Kolmogorov, and A. Blake. Grabcut: interactive foreground extraction
using iterated graph cuts. In Proc. ACM SIGGRAPH, 2004.

[22] C. Rother, T. Minka, A. Blake, and V. Kolmogorov. Cosegmentation of image pairs
by histogram matching-incorporating a global constraint into MRFs. In Proc. CVPR,
2006.

[23] J. Shotton, M. Johnson, and R. Cipolla. Semantic texton forests for image categoriza-
tion and segmentation. In Proc. CVPR, 2008.

[24] J. Shotton, A. Fitzgibbon, M. Cook, T. Sharp, M. Finocchio, R. Moore, A. Kipman,
and A. Blake. Real-time human pose recognition in parts from single depth images. In
Proc. CVPR, 2011.

[25] P. Yin, A. Criminisi, J. Winn, and I. Essa. Tree-based classifiers for bilayer video
Segmentation. In Proc. CVPR, 2007.


