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OTT, EVERINGHAM: SHARED PARTS FOR DEFORMABLE PART-BASED MODELS 1

Shared Parts for Deformable Part Models
Patrick Ott
http://www.comp.leeds.ac.uk/ott/

Mark Everingham
http://www.comp.leeds.ac.uk/me/

School of Computing
University of Leeds
West Yorkshire, UK

A recent approach to object detection, which stands out for its success on recent PASCAL
Visual Object Class (VOC) challenges [1] is the deformable part-based model (DPM) of
Felzenszwalb et al. [2]. The DPM method incorporates a higher degree of learnt invariance
by partitioning the object model into a set of local parts which are allowed to move around
subject to soft spatial constraints. In addition, the DPM method uses the idea of a mixture
model to capture the large variation in appearance that an object category may present.

One might hope to increase the accuracy of the DPM by increasing the number of mix-
ture components and parts to give a more faithful model, but multiple reasons prevent this
approach from being effective: (i) since mixture components have separate parts the number
of parameters increases linearly with the number of mixture components; (ii) since train-
ing examples are assigned to a single mixture component, the amount of training data per
component decreases linearly with the number of components.

We propose extensions [3] to the DPM allowing for more powerful detectors to be built.
The key idea is to share parts between detectors so that (i) the overall number of parameters
is reduced, encouraging generalization from finite training data; (ii) training examples are
shared across all relevant parameters, such that the paucity of available training data has less
negative impact. This results in more compact models and allows training examples to be
shared by multiple components, ameliorating the effect of a limited size training set.

Parts are shared both (i) within object categories, e.g. a ‘wheel’ part may be shared across
mixture components representing different viewpoints of a car; (ii) across object categories,
e.g. the same wheel part may be shared by detectors for both cars and motorbikes. We pose
learning of the extended DPM with shared parts as minimization of a novel energy function
allowing simultaneous learning of parts for multiple object classes and mixture components.

We report state-of-the-art results on the PASCAL VOC dataset [1] and establish the ef-
fectiveness of part sharing over detectors which do not share parts.

Patrick Ott Biography: Patrick Ott obtained his Diploma in Computer Science and Busi-
ness at the Anhalt University of applied Sciences (Germany) and the Hangzhou Dianzi Uni-
versity (China). He is currently a final-year PhD student in the vision group at the University
of Leeds, supervised by Mark Everingham.
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GOSWAMI, KITTLER: CROSS SPECTRAL FACE RECOGNITION 1

Cross Spectral Face Recognition between
Near Infrared and Visible Faces

Debaditya Goswami
d.goswami@surrey.ac.uk

David Windridge
d.windridge@surrey.ac.uk

Chi Ho Chan
chiho.chan@surrey.ac.uk

Josef Kittler
j.kittler@surrey.ac.uk

Centre for Vision, Speech and Signal
Processing
University of Surrey
Guildford
Surrey, UK

Abstract

Performing facial recognition by comparing Near Infrared (NIR) probe images against
a gallery of visible-light (VIS) images is a relatively new method of countering illumi-
nation variation problems in face recognition. In this paper we describe an approach
which learns the relationship between NIR-VIS image pairs to perform classification. A
series of preprocessing algorithms, followed by LBP representation are used to trans-
form the image-pairs into a separate, lower-dimensional subspace where a relationship
between the modalities is learnt using Canonical Correlation Analysis. We demonstrate
how the novel combination of LBP feature histograms and CCA classification performs
in comparison with several other pre-processing techniques.

1 Introduction
Traditional authentication mechanisms like keys, ID-cards, tokens are no longer sufficient to
provide a truly robust security solution. The integrity of such security systems is based on the
premise that the owner of the authenticating device is not an impostor. Biometric systems are
based on who the user is or how the user behaves. Due to a combination of factors, including
greater computing power, storage and breakthroughs in facial image processing - interest in
facial features as a biometric has increased.

A major problem facing face recognition systems in the visible light (VIS) spectrum is
that of illumination variation[1]. To combat this, various approaches have been tried, includ-
ing the use of 3-D [4], Thermal IR [13][10] and even fusion of images from multiple spectra
[18][5].However, such techniques require acquisition of new databases, and interoperability
with existing optical databases is minimal.

The use of Near Infrared (NIR), usually described as lying in the 800 - 1000 nm range,
in face-recognition to counter illumination variation has become well-established [25] [14]
[24] [15]. The advantages over facial images recorded in the visible light spectrum are that
indirect illumination can be largely eliminated. This is due to the fact that when capturing

c© 2011. The copyright of this document resides with its authors.
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2 GOSWAMI, KITTLER: CROSS SPECTRAL FACE RECOGNITION

images in the NIR spectrum, it is very unlikely that there are multiple sources of NIR illumi-
nation present. Again, these methods are subject to the same restrictions as other non-VIS
methods. In typical, real-life identification scenarios it will not be the case that the gallery
image with which one is attempting to seek a correlation is acquired in the NIR modality.
A more useful scenario would be matching visible images to NIR images when attempting
person identification. In such cases, the use of a NIR probe image is still advantageous,
providing a fixed reference point, as opposed to an attempt to match pairs of visible images
with arbitrarily varying illuminations.

However the use of NIR introduces certain systematic deviations into the probe-gallery
comparison. These include differing absorption levels, subsurface scattering functions for
human skin [9] and various other spectral inequalities. Matching NIR probe images against
VIS gallery images is quite new in the field of face recognition. A general learned association
algorithm that can be applied to heterogeneous image problems is proposed in [16], and
referred to as Common Discriminant Feature Extraction (CDFE) by the authors. This was
originally developed to enable recognition between VIS images and their sketch images.
It is then used to perform face recognition between VIS and NIR images. Li et al [22]
use a system of canonical correlation analysis (CCA) in which the learning mechanism is
implemented between features in linear discriminant analysis (LDA) subspaces.

Reiter et al [19] use CCA and active appearance models [7] to predict NIR face depth
maps from RGB face data, thereby demonstrating the relation between NIR and VIS from a
simulation-based perspective. While not a true face recognition system when considered on
its own, the method described here could be modified for use in such a system. In [23], the
authors tackle multiple problems in their work. Using the MBGC Portal Challenge dataset,
they attempt to match partial NIR video clips to a gallery of full frontal VIS images.

The use of Local Binary Patterns (LBP) in heterogeneous face recognition has also been
attempted. In [6], the authors combine LBP feature representation and patch-based manifold
learning to synthesize a virtual sample from an input image. Use of the LBP operator is
made again in [12], where the authors additionally extract histograms of oriented gradients
(HoG) feature descriptors in an effort to increase face recognition performance.

Figure 1: An overview of the system described in this paper. The feature extraction stage
consists of combinations of LBP, PCA and LDA which feeds into CCA. The learned model
is then used to transform the test images prior to classification.(Refer Section 3 for details)

In this paper, we attempt to use the novel combination of LBP histograms of corre-
sponding NIR-VIS image pairs to learn a relationship using CCA. LBP features should be
ideally matched to the NIR-VIS matching problem in that they largely remove all large-scale
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GOSWAMI, KITTLER: CROSS SPECTRAL FACE RECOGNITION 3

Figure 2: Images from the dataset with the pose-reflection (-10/0/+10) for both VIS (left)
and NIR (right)

morphological considerations from the CCA matching (since CCA can at best approximate
a linear filter). Performing CCA directly between image pairs is prohibitively expensive
computationally due to a significant overhead. Hence a number of experiments, including
projection into a lower dimensional subspace (using PCA/LDA) before CCA are described.
Figure 1 shows an overview of the proposed system. The rest of the paper is organised in the
following manner: Section 2 contains some background theory on key aspects of the algo-
rithm. Section 3 details the methodology and procedures used in the experiments. Section 4
discusses and analyses the results after experimentation. Section 5 concludes by summaris-
ing the experimental procedure and results, followed by avenues of future work.

2 Theoretical Background

2.1 Spectral Differences between VIS and NIR

VIS images are captured in the 0.4 - 0.7 µm band. NIR images on the other hand, lie in
the 0.8 - 1.0 µm band (invisible to the naked eye). The popularity of NIR as a comparable
source to VIS is based on the fact that it is far enough from the visible light spectrum so
as to be unaffected by ambient visible light sources, and yet exhibit similar facial structures
(as seen in Figure 2). However, there exist a number of non-trivial difficulties in comparing
the two modalities. These include differential visibility of features at differing wavelengths,
and also the effects of excessive feature diffusion (which increases in magnitude as we move
along the NIR spectrum). Difficulties also exist if the information available to the differing
spectral modalities is of a differing quality [8]. Of these, the differential visibility of features
represent potentially the most significant obstacle for face matching.

In this paper, we attempt to transform the VIS and NIR images into an alternate space
which enhances their commonality, while retaining enough discriminative information be-
tween subjects. This is done with various combinations of LBP histogram quantisation and
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4 GOSWAMI, KITTLER: CROSS SPECTRAL FACE RECOGNITION

dimensionality reduction (PCA/LDA), followed by application of CCA.

2.2 Local Binary Patterns

LBP(xc,yc) =
7

∑
n=0

2ns(in− ic), (1)

where n is the number of neighbours (8 in this
case) over the central pixel c, ic and in are the
gray level values of the image at c and n, and
s(u) is 1 if u≥ 0 and 0 otherwise.

Figure 3: The LBP operator (left), and uniform LBP image representation (right)

Local Binary Patterns [17] (LBP) are a form of texture representation that employs struc-
tured ordinal contrast encoding to capture the complex image micro-structure. Figure 3
shows the basic LBP operator and its effect on an image. LBP is insensitive to monotonic
gray-level transformations, which makes it a highly robust representation for use in cross
spectral face recognition. One of the more interesting aspects of LBP relates to the concept
of uniform LBP patterns. Ojala et al, state that approximately 90% of discriminative infor-
mation in an image is restricted to uniform variants of LBP. A uniform LBP contains at most
two bit-wise transitions. It describes 2 types of patterns - rotational patterns, such as edges
and two non-rotational patterns, such as a bright spot or a flat area.

Considering the inherent spectral properties (monotonic invariance) of NIR images, an
LBP histogram representation of such an image would enable comparison with a VIS image
possessing a relatively higher degree of variation. Hence a corresponding representation of
a VIS image by its LBP histogram can be used to eliminate a large portion of the spectral
differences between VIS and NIR images. However, it should be noted that skin texture
can still vary between NIR and VIS, and LBP does not account for these differences. For
the purposes of the experiment, multi-region (8x8, non-overlapping segments) uniform LBP
feature histograms were used[2]. This has been demonstrated to improve face recognition
accuracy. However, it should be noted that excessive segmentation can render the system
vulnerable to misalignment or mis-registered faces. The uniform LBP feature histograms
were obtained from the images in the following manner:

1. Perform uniform LBP on the overall image
2. Divide image into 8x8, non-overlapping segments.
3. Populate LBP histogram bins for each uniform LBP image segment

A significant benefit of using uniform LBP in this system was the reduction in number of bins
per LBP segment down to 59 from 256, resulting in an overall 64x59 matrix representing the
image. This meant that for the next stage of the process involving CCA modeling, rasterised
multi-region LBP vectors (1 x 3776) further reduced computational overhead.

Proc. of the 3rd British Machine Vision UK Student Workshop (BMVC’11 WS, Dundee, Scotland, 2nd September, 2011)
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GOSWAMI, KITTLER: CROSS SPECTRAL FACE RECOGNITION 5

2.3 Canonical Correlation Analysis
Canonical Correlation Analysis is a multivariate regression method introduced by Harold
Hotelling [11]which attempts to describe the relationship between 2 data sets in terms of
their cross-covariance matrices. In face recognition, CCA is a powerful tool that can be used
to identify correlation between 2 sets of images (VIS and NIR for example). Consider 2 ran-
dom, correlated vectors x and y, analogous to VIS and NIR image pairs respectively. CCA
can be used in this case to obtain pairs of directions wx and wy which maximise the correla-
tion between the projections x = wT

x x and y = wT
y y. The directions can then be obtained as a

maxima of the following function:

ρ =
E[xy]√

E[x2]E[y2]
=

E[wT
x xywT

y ]

E[wT
x xxT wx]E[wT

y yyT wy]
(2)

This can be represented:

ρ =
wT

x Cxywy√
wT

x CxxwxwT
y Cyywy

(3)

where Cxx ∈ Rpxp and Cyy ∈ Rqxq are the within-set covariance matrices, while Cxy ∈ Rpxq

is the between-set covariance matrix. The correlation score, S can be calculated using nor-
malised cross correlation between the output CCA projection vectors x and y. Namely:

S =
x.y

||x||.||y|| (4)

One of the major strengths of CCA is the fact that almost any 2 signals, with some degree
of correlation, can be used as input vectors to learn a correlation-relationship between them.
However, it should also be noted that CCA is highly dataset dependent. Given a lack of
observation samples, it was necessary to artificially inflate the training data by including
images which had been flipped about their vertical axis. Dimensionality reduction also plays
an important role in the CCA learning process. Computing CCA directly on the images is a
very computationally intensive task, and results in a high level of sparsity in any projection
matrices. In this paper, we demonstrate the effectiveness of CCA in face recognition by
using a combination of modalities, input vectors and combinations of both. (Further details
in Section 3)

3 Methodology

3.1 Data
The data collected consists of 150 subjects for both NIR and VIS. As seen in Figure 4,
for each subject and modality there are 3 deviations from -10 through frontal to +10. The
illumination profile is set to simulate a point-source of light on the forehead for a fully frontal
face. Although every attempt was made during data capture to ensure that the poses were
under strict control, there were still a few cases of systematic errors. As a result, not all the
images were strictly of the deviations intended. This seemed to have no negative effect on
the learned model, which is shown to be relatively insensitive to small deviations. Manually
annotated eye-locations for the data were used for the pre-processing.

Proc. of the 3rd British Machine Vision UK Student Workshop (BMVC’11 WS, Dundee, Scotland, 2nd September, 2011)
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6 GOSWAMI, KITTLER: CROSS SPECTRAL FACE RECOGNITION

Figure 4: The dataset contained 150 exclusive subjects, with varying poses of -10/0/+10
degrees. Corresponding NIR and VIS pairs for each subject and pose were collected.

3.2 Data Preparation
The image data for both VIS and NIR was put through a series of pre-processing algorithms
prior to calculating their LBP representations. First, the face area was detected using man-
ually annotated eye locations.These detected faces were scaled and cropped to a 140x128
resolution. Following this, the images were transformed to grayscale and normalised to en-
sure zero-mean and unit variance. The normalised, cropped faces are then either piped into
a sequential photometric chain of further pre-processing algorithms prior to LBP, or directly
into the LBP histogram generator. To compare the baseline performance for cross-spectral

Figure 5: This figure shows the image pipeline that was fed into the Feature Selection stages
of the process (NIR above, VIS below). From left to right, the original image was cropped
and then pre-processed using the sequential chain of photometric algorithms.

face recognition, the photometric pre-processing outlined by [21] is used. This sequential
chain of pre-processing algorithms (SQ preprocessing hereafter) ensures that the effects of
illumination variation are countered to a large extent, while still retaining distinguishable fa-
cial features for use in face recognition. The data is preprocessed using the following chain
of algorithms:

• Gamma correction: This algorithm enhances the local dynamic range of the image
in darker sections, while compressing it in bright regions and at highlights.

Proc. of the 3rd British Machine Vision UK Student Workshop (BMVC’11 WS, Dundee, Scotland, 2nd September, 2011)
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GOSWAMI, KITTLER: CROSS SPECTRAL FACE RECOGNITION 7

• Difference of Gaussian Filtering: Essentially a bandpass filter, DoG filtering re-
moves non-essential shading from face images while still retaining the broader, more
distinguishable features.
• Contrast Equalisation: Global rescaling of the image intensity values to ensure that

there are no ‘extreme’ values

In addition, experiments substituting the SQ preprocessing for histogram equalisation were
also conducted. This enabled us to further investigate the effects of monotonic invariance be-
tween NIR-VIS in the LBP space. Following the determination of the final input vectors to
the CCA algorithm, a combination of dimensionality reductions were used to ensure greater
computational efficiency, as well as investigating the benefits of greater inter/intra-class dis-
parity. To this end, standard PCA and LDA algorithms, which are well documented in face
recognition were used [3].

3.3 Experimental Procedure
The main aim of the experiments was to identify and evaluate the best algorithms for NIR→
VIS face matching. Figure 6 shows the overall methodology for the experiments conducted
in this paper. The combination of sequential chain pre-processing, LBP histogram gener-
ation, dimensionality reduction and use of CCA lead to a number of testable algorithms,
which are outlined in Table 1. The CCA relationship for all experiments was derived using

Figure 6: Experimental Procedure

NIR and VIS fully frontal images only. To simulate multiple samples per pose per subject,
it was necessary to use images that had been flipped about their vertical axis (especially for
LDA). CCA is well documented to be highly dependent on the size of the training set [20],
and smaller training sets can result in over-fitting. Purely frontal cross-modal CCA exper-
iments are thus omitted, since including them would mean a reduction in training images
resulting from the split into training and test frontal images. Instead both the +/-10 degree
deviated images are used for testing. As the results show, the CCA model is not affected
greatly by the pose variation and performs comparably to pose-invariant, cross-spectral face
matching results with pure LBP. A set of match scores were obtained using normalised cross-
correlation (Refer to Eqn 4) on the CCA projections of the probe and gallery datasets. The
classification was performed using a minimum distance classifier, to obtain Rank 1 recogni-
tion performance for all the experiments. Table 1 shows a list of all the experiments carried
out, along with the performance of each algorithm.

Proc. of the 3rd British Machine Vision UK Student Workshop (BMVC’11 WS, Dundee, Scotland, 2nd September, 2011)
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8 GOSWAMI, KITTLER: CROSS SPECTRAL FACE RECOGNITION

Probe Gallery Algorithm Performance (%)

NIR frontal VIS frontal LBP 54
NIR frontal VIS frontal histeq+LBP 53.33
NIR frontal VIS frontal SQ+LBP 85.67

VIS deviated VIS frontal LBP 99
VIS deviated VIS frontal histeq+LBP 99
VIS deviated VIS frontal SQ+LBP 99.33

NIR deviated NIR frontal LBP 98.67
NIR deviated NIR frontal histeq+LBP 98
NIR deviated NIR frontal SQ+LBP 99

NIR deviated VIS frontal LBP 46.44
NIR deviated VIS frontal histeq+LBP 44
NIR deviated VIS frontal SQ+LBP 65.67
NIR deviated VIS frontal LBP+CCA 95

NIR deviated VIS frontal PCA+CCA 86.67
NIR deviated VIS frontal PCA+LDA+CCA 75.67
NIR deviated VIS frontal LBP+PCA+CCA 95.33
NIR deviated VIS frontal LBP+PCA+LDA+CCA 98.33
NIR deviated VIS frontal SQ+LBP+PCA+CCA 94.67
NIR deviated VIS frontal SQ+LBP+PCA+LDA+CCA 97

Table 1: Detailing the algorithms and modal relationships tested. The best perform-
ing algorithms are highlighted in red. Note the highest performing combination of
SQ+LBP+PCA+LDA+CCA with a recognition rate of 98.33%

4 Results

Figure 7 shows the recognition rates for the unimodal experiments using LBP histograms
(only). It can be seen that pose-variation has some effect on the recognition performance,
but only if the matched modalities are distinct. For unimodal systems, the base LBP classi-
fication is 99.3% for the VIS deviated→ VIS frontal [SQ+LBP]

The results of classification using CCA can be seen in Figure 8 . Consider the figures
when compared with their input CCA vectors. There are 3 types -Cropped faces without
SeqChain or LBP, Cropped face LBP histograms without SeqChain and Cropped face LBP
histograms with SeqChain. It is clearly seen that the use of LBP has a significant effect on
the recognition performance.

There are several points of interest here. The drop in performance between PCA+CCA
and PCA+LDA+CCA when using non-LBP face images can be attributed mainly to a rudi-
mentary LDA training. With a high ratio of features:samples/class, it is quite possible that
the LDA projection removes essential, discriminatory data from the vectors, giving rise to a
performance deficit when compared with the corresponding LBP performance.

Another point of interest to note here is that the SQ preprocessing does not add anything
to the CCA algorithm. In fact, a reduction in performance is seen. Considering the sequence
of preprocessing algorithms that are used, it is apparent that the NIR-VIS image pairs are
already transformed into a space which increases their inherent similarity, thereby reducing
the effect CCA has on the final correlation measure.

Proc. of the 3rd British Machine Vision UK Student Workshop (BMVC’11 WS, Dundee, Scotland, 2nd September, 2011)
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GOSWAMI, KITTLER: CROSS SPECTRAL FACE RECOGNITION 9

Figure 7: Rank 1 Recognition Performance for pure LBP classification (without CCA),
where SQ=Sequential Chain Preprocessing, histeq=Histogram Equalisation and LBP=Local
Binary Patterns

Finally, compare the sets of CCA (Fig.8) vs non-CCA (Fig.7) results. It can be seen that
the peak performance for cross-spectral face matching using CCA is 98.33%. The highest
performance of VIS→VIS matching is 99.33%. This is despite the fact that the CCA is
trained using frontal and tested using deviated images. Additionally, the way in which the
data collection was undertaken results in little to no illumination variance between the gallery
images (which are scenarios where the benefits of cross-spectral matching become fully
apparent). So we can see that the performance of cross-spectral matching using LBP features
combined with CCA gives a very comparable benefit when compared to direct VIS→VIS
face matching.

5 Conclusions
In this paper, we have attempted to solve the problem of NIR →VIS, cross-spectral face
matching using a unique combination of LBP histograms to learn a relationship between the
2 modalities with CCA. We hypothesised that this would enable a purer comparison between
NIR and VIS, by removing a large amount of the differences attributable to their separate
spectral and textural properties. A series of experiments to verify this using combinations
of cross-modal, cross-pose, pre-processed input images were conducted. Results indicated
that the best cross-modal performance was obtained by using the LBP+PCA+LDA+CCA
algorithm, which gave a recognition rate of 98.67%. This is comparable with a maximum
performance of 99.33% using LBP/VIS deviated-VIS frontal (without CCA).

An important point to note is that the benefits of cross-spectral matching are truly appar-
ent in scenarios which involve a high variability in illumination profiles between the source
and probe images. The use of NIR imagery at the probe point enables the regularisation of
illumination, thereby enabling a more robust face recognition solution. Given that the data
used in the experiments did not contain significant amounts of illumination variation with
respect to VIS probe and VIS gallery images, the strong performance of NIR-VIS matching
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Figure 8: Rank 1 Recognition Performance for CCA classification. For each type of input
vectors there are a set of pre-processing and dimensionality reduction techniques. Note that
the CCA training is always done using NIR frontal and VIS frontal images.

is potentially significant.
Future experiments which incorporate a greater volume of data samples (and variability)

are planned. We also note that the progress of NIR-VIS face matching to date has been
mainly through model and learning-based approaches. Relatively few techniques attempt to
physically model the relationship between the modalities, and this is therefore an avenue of
further exploration.
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ECCV 2006, volume Volume 3954/2006 of Lecture Notes in Computer Science, pages
13–26. Springer Berlin / Heidelberg, july 2006.

[17] T Ojala, M Pietikainen, and T Maenpaa. A comparative study of texture measures with
classification based on feature distributions. In Pattern Recognition, volume 29, 1996.

[18] Z.H. Pan, G. Healey, M. Prasad, and B. Tromberg. Face recognition in hyperspectral
images. In IEEE Trans. Pattern Analysis and Machine Intelligence, volume 25 no. 12,
pages 1552–1560, December 2003.

[19] Michael Reiter, Rene Donner, Georg Langs, and Horst Bischof. 3d and infrared face
reconstruction from rgb data using canonical correlation analysis. In International
Conference on Pattern Recognition, 2006.

[20] Quan-Sen Sun, Pheng-Ann Heng, Zhong Jin, and De-Shen Xia. Face recognition based
on generalized canonical correlation analysis. In Lecture Notes in Computer Science,
Advances in Intelligent Computing, volume 3645/2005, pages 958–967, 2005.

Proc. of the 3rd British Machine Vision UK Student Workshop (BMVC’11 WS, Dundee, Scotland, 2nd September, 2011)

12



12 GOSWAMI, KITTLER: CROSS SPECTRAL FACE RECOGNITION

[21] Xiaoyang Tan and Bill Triggs. Enhanced local texture feature sets for face recognition
under difficult lighting conditions. In Analysis and Modelling of Faces and Gestures,
volume 4778/2007, pages 168–182, 2007.

[22] Dong Yi, Rong Liu, RuFeng Chu, Zhen Lei, and Stan Z. Lei. Face matching between
near infrared and visible light images. In International Conference, ICB 2007, pro-
ceedings, volume 4642/2007, pages 523 – 530, August 2007.

[23] Dong Yi, ShengCai Liao, Zhen Lei, Jitao Sang, and Stan Z. Li. Partial face match-
ing between near infrared and visual images in mbgc portal challenge. In Massimo
Tistarelli and Mark S. Nixon, editors, ICB, volume 5558 of Lecture Notes in Computer
Science, pages 733–742. Springer, 2009. ISBN 978-3-642-01792-6. URL http:
//dblp.uni-trier.de/db/conf/icb/icb2009.html#YiLLSL09.

[24] S.Y. Zhao and R.R. Grigat. An automatic face recognition system in the near infrared
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Abstract

We present a number of related novel methods for reducing the dimensionality of
data for the purposes of 2D and 3D face recognition. Results from psychology show
that humans are capable of very good recognition of low resolution images and carica-
tures. These findings have inspired our experiments into methods of effective dimension
reduction. For experimentation we use a subset of the benchmark FRGCv2.0 database
as well as our own photometric stereo “Photoface” database. Our approaches look at the
effects of image resizing, and inclusion of pixels based on percentiles and variance. Via
the best combination of these techniques we represent a 3D image using only 61 vari-
ables and achieve 95.75% recognition performance (only a 2.25% decrease from using
all pixels). These variables are extracted using computationally efficient techniques in-
stead of more intensive methods employed by Eigenface and Fisherface techniques and
can additionally reduce processing time tenfold.

1 Introduction

Automatic face recognition has been an active area of research for over four decades and
a key part of this research is understanding how different data representations affect recog-
nition rates and efficiency. Digital images of faces have a very high data dimensionality:
a 200× 200px image defines a point in a 40000-dimensional space, making computation a
slow and resource hungry process. This is compounded when faces images are extended into
3D models. Reducing the dimensionality of the data without discarding the discriminatory
information is the aim of this research. If a face can effectively be reduced down from many
thousands of dimensions of raw data to a few tens of dimensions as in this paper, then storage
needs become far less and processing becomes far faster. This has obvious applications for
industrial and commercial implementations.

In this paper, we prove the following contributions for both the FRGCv2.0 database [11]
and our own photometric stereo database [22] captured using the “Photoface” device [6]:

c© 2011. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.
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1. Optimal recognition results for close-cropped faces are obtained when the resolution
is reduced to a mere 10x10 pixels.

2. The exclusive use of just 10% of the data (chosen to be those pixel locations with the
greatest variance) is sufficient to maintain recognition rates to within 10% of those
rates that include all of the data.

3. When combining the above two contributions we perform recognition at an accuracy
of 96.25% for 40 subjects using only 61 dimensions (pixels). This compares to 98%
when the full 80x80 resolution is used on all data.

Ultimately we aim to compare dimension reduction techniques based on a percentile and
variance based inclusion principle (to exclude 90% of the data) with a baseline condition
containing all pixels.

Our own database, Photoface, provides over 3000 sessions of 457 individuals, and scans
are captured using photometric stereo [17] which results in estimated surface normals at each
pixel. Full details of the actual device used can be found in [6] and an example of a scan can
be seen in Fig. 1. The FRGCv2.0 database, which we also use in this paper, does not provide
the surface normals. They can be calculated by numerically differentiating the point cloud
data. We also include experiments on the depth map images to rule out any errors introduced
by differentiation.

Figure 1: Examples of FRGCv2.0 (left) and Photoface
(right) 3D scans. NB They are not of the same person.

Using 3D data for face recog-
nition allows for pose and illumi-
nation correction which are two
commonly cited problems with
conventional 2D images. Better
recognition rates have also been
reported using 3D over 2D data
[4], although this is not always
replicated [7]. One reason for this
may be the representation of the
3D data used in the analysis. Gök-
berk et al. [5] performed recogni-
tion experiments using numerous 3D representations. They concluded that ‘. . . surface nor-
mals are better descriptors than the 3D coordinates of the facial points.’ This is at odds with
most research which uses the 3D point coordinates as a starting point. Surface normals are
used in the experiments performed in this paper for this reason.

There are many mathematical techniques for dimensionality reduction, and in particu-
lar the Eigenface [15] and Fisherface [2] (based on Principle Components Analysis (PCA)
and Fisher’s Linear Discriminant (FLD) respectively) techniques are commonly used in face
recognition. With an added dimension, 3D face models potentially compound the problem
for large data storage. Recent techniques such as sparse representation (such as non-negative
matrix factorization) and manifold learning (such as local linear embedding [8]) show that ef-
fective methods of dimension reduction are a key topic. Methods that can reduce the amount
of data without discarding discriminatory information are essential for faster processing and
optimal solutions. There have been many attempts in the literature to extend and generalise
PCA, FLD and other methods [19, 20, 21] in order to improve robustness to pose, illumi-
nation, etc, typically at the expense of computational efficiency. The main contribution of
this paper by contrast, is to show that for the constrained case of frontal 2.5D data, then the
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efficiency can be improved even compared to PCA by using more direct analysis without the
need to project into a new subspace.

Caricaturing essentially enhances those facial features that are unusual or deviate suffi-
ciently from the norm. It has been shown that humans are better able to recognise a caricature
than they are the veridical image [10, 12]. This finding is interesting as caricaturing is simply
distorting or adding noise to an image. However this noise aids human recognition and this,
in turn, provides insights into the storage or retrieval mechanism used by the human brain.

Unnikrishnan [16] conceptualises an approach similar to face caricatures for human
recognition. In this approach, only those features which deviate from the norm by more
than a threshold are used to uniquely describe a face. Unnikrishnan suggests using those
features whose deviations lie below the 5th percentile and above the 95th percentile, thereby
discarding 90% of the data. Unnikrishnan provides no empirical evidence in support of his
hypothesis, so an aim of this paper is to test the theory experimentally. We do this in two
ways: the first directly tests his theory, finding the thresholds for each pixel which represent
the 5th and 95th percentile values and only including those pixels in each scan which lie out-
side them (outliers). The second is loosely based on Unnikrishnan’s idea, and looks at the
variance across the whole database to calculate the pixel locations with the largest variance.
Only the pixels at these locations are then used for recognition.

An obvious method of reducing the amount of data is to downscale the images. A
great deal of research has gone into increasing the resolution of poor quality images (super-
resolution [1, 18], hallucinating [23]) by combining images or using statistical techniques to
reproduce a more accurate representation of a face (e.g. from CCTV footage). By contrast,
little research attempts to directly investigate resolution as a function of recognition rates
on 3D data. Toderici et al. state that there is little to be gained from using high resolution
images [14], Boom et al. state that the optimum face size is 32×32 px for registration and
recognition [3], a view which is reinforced by a more recent study by Lui et al. who state
that optimum face size lies between 32 and 64 pixels [9]. These experiments have used 2D
images. Chang et al. use both 2D and 3D data and conclude that there is little effect of
decreasing resolution up to 25% on 2D data and 50% on 3D [4] using PCA. In summary,
the research suggests that relatively low resolutions give optimum recognition (for the given
recognition algorithms). These findings are conducive to the fact that the same appears to be
true of human recognition [13].

2 Methods and data
This section details the datasets, preprocessing steps, and the methods used in the experi-
ments.

2.1 Data and preprocessing
Experiments were performed on 10 sessions of 40 subjects facing frontally without expres-
sion on the FRGCv2.0 and our own photometric stereo database. 2D and 3D data are used
in separate experiments.

The FRGCv2.0 dataset comes in point cloud format which is converted to a mesh via
uniform sampling across facets. Noise is removed by median smoothing and holes filled
by interpolation. Normals are then estimated by differentiating the surface. The depth map
images are all normalized to have a minimum value of 0.
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Figure 2: The cropped re-
gion of a face. The distance
between the anterior canthi
(d) is used to calculate the
cropped region.

Data is cropped for both databases as follows: the median
anterior canthi and nose tip across all sessions are used for
alignment via linear transforms. The aligned images are then
cropped into a square region as shown in Fig. 2 to preserve
main features of the face (eyes, nose, mouth), and exclude the
forehead and chin regions which can frequently be occluded
by hair.

Our 2D experiments are based on data as follows: the ac-
companying colour image for each FRGCv2.0 scan is con-
verted to greyscale, aligned and cropped in the same way as
the 3D scan. The 2D images in the Photoface database are the
estimated albedo images which are also aligned and cropped
in the same way as the 3D data. Due to memory limitations,
both the 2D and 3D data are then resized to 80×80 px and are

reshaped into a 6400-dimension and a 12800-dimension (x and y components of the surface
normals are concatenated) vector respectively.

2.2 Calculating outliers and variance
The thresholds for each pixel are calculated which represent the 5th and 95th percentile val-
ues. We are interested in the norm across the whole dataset for each pixel location rather
than the norm for each image. For the 2D images, percentile values are calculated for the
greyscale intensity value for each pixel location. There are 400 sessions, so there are 400
values for each pixel from which we calculate the percentile thresholds. The same process is
performed for 3D surface normal data, giving x and y surface normal component thresholds
for each pixel. Pixels which have a value between the 5th and 95th percentile are discarded,
leaving only the 10% outlying data. We shall refer to this as the “percentile inclusion crite-
rion”. Examples can be seen in Fig. 3.

Figure 3: Examples of the y-components of the surface normals
that have values outside the 5th and 95th percentiles for four sub-
jects which are used for recognition.

The above method
extracts the least com-
mon data from each ses-
sion and that is what
is used for recognition.
Alternately, we can use
the greyscale variance at
each pixel location as a
measure of discrimina-
tory power. If a pixel

shows a large variance across the dataset, then this might make it useful for recognition (as-
suming that variance within the class or subject is small). Therefore the standard deviation
of each pixel is calculated over all the sessions. Whether or not a particular pixel location
is used in recognition depends on whether or not the variance is above a pre-determined
threshold. Examples of the use of different thresholds are shown in Fig. 4. We refer to this
as the “variance inclusion criterion”.

2.3 Image resizing
The effect of different resizing techniques on linear subsampling are investigated in terms of
their effect on recognition as a function of resolution. Resizing is performed via the Matlab
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Figure 4: Examples of the regions which remain for x (top row) and y-components (bottom
row) as the threshold variance is increased from left to right. White regions are retained and
black regions are discarded.

imresize() function using the deafult bicubic kernal type and with antialiasing on, as
these settings were found to provide the best performance.

2.4 Recognition algorithm

Our experiments used to test recognition accuracy employ the leave-one-out paradigm. This
dictates that every session is used as a probe against a gallery of all other sessions once. There
are therefore 400 classifications per condition of which the percentage correctly identified is
shown.

As the purpose of this research is feature extraction efficiency, the actual choice of classi-
fier is not so important. We therefore implement Pearson product-moment correlation coef-
ficient (PMCC) as a similarity measurement between a probe vector and the gallery vectors.
The gallery session with the highest coefficient is regarded as a match. Experimentally, we
found that PMCC gives similar performance on baseline conditions to the Fisherface algo-
rithm but is approximately eight times faster.

3 Results

3.1 Dimensionality reduction via the percentile inclusion criterion

Unnikrishnan’s theory states that we should expect reliable performance using only the data
which lies outside the 5th and 95th percentiles [16]. Table. 1 shows recognition rates on 2D
and 3D data using both all data and the outliers only. Note in particular that, for the 3D
surface normal data, the rates drop by under 10% when using outlier data only. This effect
seems limited to the surface normal data and is not seen in either the 2D or depth map data.
We have included results from a fusion technique using the Photoface surface normal data
combined with the albedo image. There is a small decrease in baseline performance and
using only the outlying data leads to a severe decrease of about 34%.

Baseline (All pixels) Outliers (10% of pixels)

2D FRGC 90 73.75
Photoface 98 64

3D
FRGC Surface normals 90.25 84.25

FRGC Depth map 71.5 23.25
Photoface 98.25 89.25

Fusion Photoface 2D + 3D 97 63.25
Table 1: Baseline versus outlier performance (% correct).
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Fig. 5 shows a plot of recognition rate as a function of which percentile range is used
for recognition on 3D Photoface data. It should be noted that similar patterns of results
were found for all datasets (2D, 3D and FRGC). As predicted, the figure shows that the best
recognition performance is obtained using the most outlying percentiles. As expected also,
the recognition rate reduces as the percentile ranges used tend toward the inliers. However,
for the most inlying data of all (i.e. percentiles 45–55) we find a significant increase in
performance. Contrary to Unnikrishnan’s theory, this implies that there is discriminative
data that is useful for face recognition in the most common data as well as the most outlying.
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Figure 5: Recognition performance using pairs of percentile ranges for 3D data.

In a related experiment, we used single 5% ranges of data for recognition (i.e. [0th−
5th], [5th−10th] etc.) as shown in Fig. 6. Note that the increase in recognition performance
for the most inlying data is not replicated. The slightly lower performance compared with
Fig. 5 is because only 5% of the data is used instead of 10%.

Performance increases by combining ranges are not always observed. Consider, for ex-
ample, the 25−30th and 70−75th percentiles for the FRGCv2.0 data. Individually the two
percentiles give a performance around the 50% mark in Fig. 6, but when combined, the
performance drops to around 40% in Fig. 5.
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3.2 Dimensionality reduction via the variance inclusion criterion
One problem with the above method is that the outlying points tend to be scattered across
different parts of the images, making inter- and intra-comparisons between individuals some-
what unstructured. For the next method therefore, we use the same pixel locations in our
recognition test for all images. Instead of using the percentiles defined within a single im-
age as an inclusion criterion, we use the variance of a particular pixel across all subjects as
explained in Sec. 2.2.

Fig. 7 shows plots combining the number of pixels which remain as we remove those with
least variance (bar plot) against the recognition performance (line plot). It is apparent that
we can achieve close to optimal performance while losing a large proportion of the pixels.
We can discard approximately 75% of the least varying pixels and observe a corresponding
drop of less than 10% in recognition performance on the FRGC data. Indeed, for Photoface
data specifically, we only lose a few percent.
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Figure 7: Recognition (line) as a function of retained pixels (bar chart). The pattern is shown
in both sets of data (FRGC on the top row and Photoface on the bottom). 2D (grayscale for
FRGC and albedo for Photoface) on the left, and surface normal data is shown on the right.

Table 2 shows a performance comparison of the two types of inclusion criteria when only
10% of pixels are retained. It is clear that by discarding the data that varies the least, we can
maintain reasonably high recognition rates.

Percentiles Variance
FRGC 84.25% ≈ 79%
Photoface 89% ≈ 92%
Processing time 800.64s 180.95s

Table 2: A comparison of recognition performance using percentiles and variance methods to
select the most discriminatory 10% of the data. The processing time includes the calculation
of the outliers/most varying pixels and 400 classifications

The processing time improvement for the variance approach is due to having decreased
the vector size by 90 %. This compares to 973.09s for the equivalent Fisherface analysis
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which provides an accuracy of 99.5% so both methods offer considerable time savings at a
small cost to accuracy.

3.3 Optimisation of Image resolution
Finally the effect of image resolution on 3D recognition performance is shown in Fig. 8. This
clearly shows that a resolution of 10×10 px provides optimal or close to optimal recognition
performance (the result for 40×40 px is 0.25% higher for FRGC) on both 3D datasets. The
same pattern appears in the 2D Photoface database, but there is a small decrease of just
under 3% for the 2D FRGC data. Nonetheless, if we take the 10× 10 px as an optiumum
size, this figure is lower than often reported in the literature. This may be because the data
used in these experiments is already highly cropped, and other research may be using other
metrics such as the distance across the uncropped head. Although not shown in the figure,
not antialiasing the resampled images led to poorer performance in all cases.
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Figure 8: The effect of resolution on 3D recognition performance. Recognition rates for
10×10 px are 94.75% for FRGC data and 98.25% for Photoface data.

Combining the optimal resolution of 10×10 px with the variance method above we can
achieve virtually the same recognition performance as an 80× 80 px image but using only
64 pixels for FRGC data and 61 pixels for Photoface data. Recognition rates of 87.75% and
96.25% are recorded (a loss of only 7% and 2% respectively). The processing time is also
reduced to 10.5s for variance analysis and 400 classifications. The same analysis using the
Fisherface algorithm takes 118s and achieves a comparable rate of 89.25%.

4 Discussion
This paper describes methods to effectively reduce data dimensions while maintaining recog-
nition performance. Computationally efficient methods using variance analysis and image
resizing have been shown to be powerful means of reducing data but maintaining discrimina-
tory information. Table 3 compares commonly used dimension reduction techniques of PCA
and Fisherface with our variance and percentile inclusion criterion techniques at different
resolutions in terms of classification accuracy and processing time. All experiments were
carried out in Matlab on a Quad Core 2.5GHz Intel PC with 2GB ram running Windows XP.
Only one percentile inclusion criterion result has been included as performance (especially
processing time) was not at the same level as other conditions.

The number of components which are used for PCA depends on the specific test as
follows: 61 components (61PCA, row 6 of Table 3) were chosen for a direct comparison
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Res. (px) Data Reduction Classifier No. Dimensions % Correct Proc. time(s)
1. 10x10 None PMCC 200 98.25 12.02
2. 10x10 VI PMCC 19 (10%) 82.75 12.52
3. 10x10 VI PMCC 61 95.75 13.02
4. 10x10 PCA Euc. dist. 21 94.5 92.47
5. 10x10 PCA PMCC 21 92.25 97.16
6. 10x10 61PCA Euc. dist. 61 96.25% 102.91
7. 10x10 VI→ 15PCA PMCC 61→ 15 89.75 128.54
8. 10x10 VI→ FF Euc. dist. 19→ 19 90.5 129.74
9. 80x80 None PMCC 12800 98.25 129.86
10. 10x10 VI→ 15PCA PMCC 19 (10%)→ 15 79 132.56
11. 10x10 VI→ FF Euc. dist. 61→ 39 99 134.69
12. 10x10 FF Euc. dist. 39 100 144.25
13. 80x80 VI PMCC 1235 (10%) 92.25 180.95
14. 80x80 VI→ 15PCA PMCC 1235 (10%)→ 15 85.25 331.40
15. 80x80 VI→ FF Euc. dist. 1235 (10%)→ 39 90.75 549.25
16. 80x80 PCA Euc. dist. 61 96.75 573.52
17. 80x80 PI PMCC 12800 89 800.64
18. 80x80 FF Euc. dist. 39 99.5 973.09

Table 3: A comparison of our variance (VI) and percentile (PI) inclusion techniques with
PCA and Fisherface (FF) algorithms sorted by processing time.

with the 61 variables of the variance inclusion criterion which gave good performance in
Fig. 7. 15 components (15PCA condition, rows 7, 10 & 14) were chosen arbitrarily as
an extra step after the variance inclusion criterion for its low dimensionality and relatively
good performance. For other tests using PCA, the number of components are chosen which
describe 85% of the variance. Some entries in the “No. Dimensions” column have (10%)
shown next to them. This is a reminder that only 10% of the data remains after applying the
variance inclusion criterion. Finally some of the rows contain a “→” symbol representing a
combination of processes eg Variance Inclusion followed by Fisherface.

Generally resizing the image to 10x10 pixels gives a clear processing time advantage
with little or no compromise on accuracy. Without additional dimensionality reduction we
achieve a recognition rate of 98.25% (row 1). We are able to reduce the dimensionality by
a further 2

3 and only lose 2.5% performance by additionally using the variance inclusion
criterion to select 61 pixel locations (row 3). This appears to give the best compromise in
terms of the number of dimensions, processing time and accuracy . The Fisherface algorithm
gives excellent performance (10x10 Fisherface gives 100% accuracy, row 12) but at the cost
of processing time.

These results only apply to the simplest case in face recognition – the frontal, expres-
sionless face. The variance inclusion algorithm would be unlikely to produce similarly good
results if expressions were present in the dataset, as these are likely to produce areas of high
variance which will not be discriminatory. Nonetheless these could be used for the purposes
of expression analysis instead of recognition or alternatively areas which change greatly with
expression could be omitted from the variance inclusion criterion.

It is clear that effective dimensionality reduction can be achieved via more direct, psy-
chologically inspired models in contrast to conventional mathematical tools such as PCA.
Processing speed is also drastically increased – if we perform recognition by the Fisherface
algorithm on 80×80 pixel images, it takes 973.09s. Using 10×10 pixel images, processing
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10 HANSEN, ATKINSON, SMITH, SMITH: DIMENSIONALITY REDUCTION FOR FACES

time drops to only 13.02s using our proposed variance inclusion method to extract 61 pixel
locations with only a 3.75% drop in performance.

5 Conclusion

We have presented a number of important findings that affect face recognition performance
regarding the effects of optimum image size and the use of different variance measures to
select discriminatory data. The findings have implications on real-world applications in that
they point to computationally attractive means of reducing the dimensionality of the data.
Empirical support of Unnikrishnan’s hypothesis [16] regarding the use of outlying percentile
ranges is provided on both the FRGCv2.0 database as well as our own photometric stereo
face database. One of the most promising results comes from resizing the original 3D data
from 80x80 pixels to 10x10 pixels and applying the variance based inclusion approach yield-
ing an accuracy of 95.75% using just 61 dimensions and the fact that this heuristic was
inspired by the human process of caricaturing. Using this combination of techniques, pro-
cessing speeds can be also be increased tenfold over the conventional Fisherface algorithm.
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Abstract

For future domestic integrated monitoring systems, we propose an approach that uses
both spatial and temporal properties to describe an action using the data now available
from commodity depth sensors. It is applicable to various domestic applications, such
as home care of frail elderly people who live alone. The novelty is in building on read-
ily available software algorithms and hardware devices to produce a continuous stream
of high-level generic events that could be exploited by application programs. Building
on lower level vision algorithms, such as object detection and tracking, we focus on the
higher level interpretation of human activities in terms of their interaction with and ma-
nipulation of other physical objects. We model an action using 3D spatial information
from the depth image, and temporal reasoning. The method can achieve high recogni-
tion accuracy and is fast, so it could be run as a background process feeding events to
any listeners that have subscribed. To illustrate the approach, we provide drinking as an
example, as this can be an important activity for monitoring elderly people’s health. We
tested our method with real users and the results show a good confidence against different
realistic room settings.

1 Introduction
The level of technology in the home continues to increase, and is a great help in our daily
lives. Basic sensors such as those for temperature, water usage, passive infrared motion, and
carbon monoxide, are being joined by smart electricity meters that perform continuous mon-
itoring to encourage energy conservation. With the rapid development of camera technology,
cameras have been getting smaller, cheaper, and lower power, so a computer vision system
could be integrated along with lighting and other electrical items in the home.

We aim to develop a home monitoring system to interpret everyday activities. This could
be used for many purposes, but would be particularly beneficial for the health care of elderly
people who live alone. The system would provide them with interaction or assistance based
on the understanding of their activities. For instance, after consultation with home care
nurses, we learned that one of the major problems for elderly people is that they suffer
dehydration because they do not remember to drink enough water. Thus, recognition of

c© 2011. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.
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2 CHEN, WEI, FERRYMAN: RECOGNITION OF EVERYDAY DOMESTIC ACTIVITIES

drinking activities is one feature that would provide useful information to care givers or even
just as a reminder to the elderly people themselves. Our work mainly focuses on higher
level human activity interpretation, with preconditions assuming some lower level image
processing has been done.

Two big challenges for home monitoring are the complexity in the environment, which
makes foreground extraction difficult, and the indoor lighting condition, which changes over
time causing most feature extraction algorithms based on colour images to fail. Thus, instead
of using conventional colour cameras, we propose to use a depth sensor, which generates
depth information that is more stable and robust against indoor lighting changes. In the
scene of a home environment, we assume the objects of interest have been identified and
tracked (including a person and relevant objects). Therefore, 3D motion trajectories of these
objects can be estimated from the depth information. Then distances between the objects,
which indicate interaction and manipulation, can be calculated using their 3D coordinates.
Actions are then detected using a spatio-temporal reasoning method.

The rest of this paper is organised as follows. Recently new depth sensing technology has
made it cheap and robust to obtain 3D positions, especially with the appearance of Microsoft
Kinect. A background introduction of depth sensors along with related work on activity
recognition based on vision systems is provided (Section 2). Objects of interest can be
detected and tracked in 3D using ambient sensors, and actions of interest are modelled and
recognised based on the spatial 3D information provided from the depth sensor and temporal
interval reasoning (Section 3). As an example, we analysed the performance with five people
who each performed a drinking action. Results and discussion are presented (Section 4). We
will apply this method to other activities and further additions are proposed (Section 5).

2 Background
Our proposed algorithm addresses the general area of human activity recognition (Sec-
tion 2.1) and in particular it processes spatial and temporal trajectories (Section 2.2). Accu-
rate trajectories can now be obtained due to advances in depth sensors (Section 2.3).

2.1 Human Activity Recognition
Human activity recognition has a wide range of potential real-life applications to help im-
prove human lives, including the areas of visual surveillance, human-computer interaction,
game controls, sports video analysis, virtual reality and video retrieval. Activity recognition
is usually based on computer vision because it is non-intrusive, but extracting the salient
events from all the data is a challenge. To recognise daily activities at home can be even
more complex, due to the large variety of room settings, furniture occlusion, complexity of
the interactions between humans and their environment, and strong diversities of character-
istic human behaviour. Since action recognition has been widely studied in computer vision,
much work has been done related to human action recognition and significant progress has
been seen in recent years [5, 19].

However, previous work focussed on home activity monitoring and everyday activity
interpretation has not been gained much attention. There are a few works related to fall
detection addressing the problem of falling down faced by elderly people [11, 12, 21]. Fall
detection based on vision is helpful for elderly people’s care, because users do not need to
wear sensors on their bodies. But, falls are not the only problem for elderly people. Snoek et
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al. [14] presented an approach for assessing the usability of a faucet for elderly people that
combines vision and audio processing. We are developing a method for monitoring users’
everyday activities, to contribute to the development of home care.

2.2 Actions as Spatial and Temporal Trajectories

Action modelling is mainly based on spatial and temporal cues. Spatial trajectory based on
interest point or object tracking has been an approach to describe actions. Velocity, direction
and maxima of the trajectory curvature have been commonly applied [9, 11, 21]. However,
a single trajectory only presents motion cues, rather than providing any spatial information
such as shapes [22]. In recent literature, some methods presented template modelling by
directly extracting a space-time shape from a 3D spatial-temporal space (x,y, t).

The original work on motion history image (MHI) presented by Bobick and Davis [2] has
been referenced and built upon in various ways by other work. A popular extension of MHI
introduced by Weinland et al. [18] is motion history volumes (MHVs) using visual hulls
instead of silhouettes in MHI. More recent work uses space-time volume built by accumu-
lating torso silhouettes over time [4, 22] instead of using multiple views. These methods can
successfully construct shapes of actions, however, due to large variations in body shapes and
individual action styles the model classification can be very difficult. Moreover, the applied
actions cannot be complex and do not allow much obstruction of body parts by each other,
so they are not practical for real-life action interpretation. Our method is inspired by these
methods. Instead of using a conventional colour image and trying to extract features and
build shapes using 2D features, we use 3D location information captured from a depth sen-
sor with temporal reasoning built on top, which can be simply applied to realistic everyday
domestic actions.

2.3 Depth Sensors

Depth map acquisition based on the principle of stereo vision as an important computer vi-
sion research field can be dated back to 1960s. Since then much research has contributed to
calculating a depth map from stereo views. In fact, due to the complexities in the stereo ge-
ometry calculation, camera systems, and correspondence matching, reconstructing the depth
map still remains a challenge in computer vision. This makes the depth map reconstructed
from stereo vision still impractical for use in real-time and in everyday life. In the past a
few years, depth sensing has drawn great attention from researchers, and commercial de-
velopment has made progress. Time-of-Flight (ToF) cameras were made available by a few
companies for research use [8, 15]. However, according to their very high price and limited
imaging range and resolution, ToF cameras cannot currently contribute to everyday life ap-
plications. Schwarz et al. [13] presented a method using ToF camera to track human poses
and recognise activities. Their method requires a prior motion model which is composed of a
set of low-dimensional manifold embeddings. In 2010, Microsoft released an imaging device
called Kinect [17], which is affordably priced for normal people’s use, and which indicates
the possibilities of everyday applications based on depth sensors. The Kinect device include
an RGB camera and a depth sensor, which consists of an infrared laser projector combined
with monochrome image sensor. The infrared laser projector projects a fixed infrared struc-
tured light pattern of dots, which is captured by the image sensor. The correspondences
between projector and sensor are used to reconstruct the depth of the scene.
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Unlike a conventional RGB colour image, pixel values in a depth image indicate cali-
brated distance between camera and scene, which provides a so-called 2.5-dimensional ver-
sion of the scene: the 3D location of points visible to both the projector and the camera is
known, but nothing is known about the parts of the scene that are not visible. Given depth
information, background subtraction, one of the main subjects in computer vision, can be
simplified, and contour detection within certain distance ranges becomes easier. Since the
low-cost depth sensor’s release, the term Natural User Interface (NUI) for user interfaces
based on hand gesture recognition has rapidly become popular [20]. In this work, we use
Kinect as the capture device, whose depth sensor gives a 640 by 480 resolution image at 30
frames/sec. The depth range is around 0.8 m to 3.5 m, with a resolution of about 1 cm [10].

3 Proposed Algorithm

Our algorithm has three steps, which are described in the sections below, and runs in real time
on a conventional home computer to provide continuous monitoring. Objects of interest are
identified and tracked, the distances between them are repeatedly calculated in a device-
independent way, and spatio-temporal reasoning is applied to create a stream of application-
related events.

3.1 3D Trajectory

Data in a depth map represents the 3D locations (x,y,z) in the scene. With this, understand-
ing human actions will not be limited to the 2D feature world, but performed in the real
3D space, which provides richer and more useful information. In this work we only focus
on higher level action recognition, so we assume lower level processes, such as feature de-
tection, object detection and tracking, have been done. We also assume the detection and
tracking is implemented using just the colour images. Images from the colour camera and
depth sensor have been registered, therefore the position of the object tracking results from
the colour image can be given in the depth image. From the results of tracking, 3D trajec-
tories of the objects of interest can be obtained from depth map. For instance, in a drinking
action, we focus on three objects: mouth, hand and cup.

Figure 1 presents four frames extracted from a video sequence containing a drinking
action. The images on the top row are from the colour camera, and those on the bottom row
are the corresponding frames from the depth sensor. In the first colour image the objects
of interest are highlighted: face (red), hand (blue) and cup (green). The depth and RGB
cameras in general will be at different positions, but their output can be registered to provide
RGB and depth values for one scene position at a single point in the images, by projecting
one image into the plane of the other. Then the corresponding locations can be drawn on the
depth images (shown on the depth images with the same colours) based on co-registration
of the two images. The dashed lines on the depth images demonstrate the movement of the
objects. We can imagine the relationship change between them over time. Figure 2 is a 3D
plot of these trajectories. To represent each object we choose a single centre point for it. A
complete drinking action includes the the person picking up the cup, drinking, and putting
the cup back down.
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Figure 1: A drinking action from one experimental participant. Top row: four frames from
colour camera. Bottom row: corresponding frames from depth sensor. Coloured lines
demonstrate the movement of three objects: face, hand and cup.

Figure 2: 3D plot of trajectories of tracked objects.

3.2 Distance Measurement

Everyday activities involve interaction and manipulation from humans to other physical ob-
jects. The aim of this work is to interpret these interactions. Trajectories from object tracking
only contain position values to model an action, but the logical relationship between objects
is also useful, and easier to process at higher levels of abstraction. To represent the relation-
ship between objects’ motions, we apply a distance measurement based on their trajectories.
From 3D trajectories obtained from the depth map, we can calculate the relative distance
between each pair of objects over time. We calculate the relationship between each pair of
objects in the 3D coordinates using a simple Euclidean distance measurement, which is up-
dated in real time at the frame rate of the sensor. Figure 3(a) illustrates the distances using a
drinking action as an example. The red continuous line in Figure 3 shows the hand-to-mouth
distance over time, and the blue dashed line shows the hand-to-cup distance.

The spatial representation we obtain is the distances between objects. To convert the re-
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(a) (b)
Figure 3: Distance between objects (a) and event intervals (b).

lationship into logical events, a threshold is applied (the gray horizontal line in Figure 3(a)).
The value of the threshold is application-dependent, that is, it is set based on the application
needs using an actual measurement in metres. This distance is hardware-independent, which
is possible because the depth map provides actual 3D positions in metres relative to the sen-
sor position, and the distance calculation removes the effect of the arbitrary choice of world
co-ordinate origin and axis directions. When the distance between two objects becomes
smaller than the threshold, an event is considered to be happening. This binary decision is
shown in Figure 3(b), which is an interval plot containing detected events. From a to d on the
horizontal time axis of both plots show the correspondence between them. During interval
a-to-d, the hand-to-cup distance is under the threshold, so an event is shown for that period
in plot (b). Similarly, during interval b-to-c, the hand-to-mouth event is drawn in plot (b).

3.3 Spatio-Temperal Reasoning
To model and combine actions we apply a temporal reasoning method. Allen’s Interval
Algebra operators introduced by James F. Allen describe the possible relations between time
intervals, which can be used as a basis for reasoning about temporal descriptions of events
[1]. There are thirteen basic relation operators presented in his work (illustrated in Figure 4).

Figure 4: The thirteen basic relationships between two intervals (X and Y ) in Allen’s Interval
Algebra [1].

In Figure 3(b) the red continuous line presents the interval of the hand-to-mouth event,
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and the blue dashed line presents the interval of the hand-to-cup event. The hand-to-mouth
event happened during the hand-to-cup event, which follows Allen’s Interval Algebra rule of
‘during’ (X d Y ). Drinking can be modelled as a combination of the two basic events, and
therefore recognised as a new higher-level event. In other words, we can define the drinking
action as follows:

Event hand-to-mouth = M ,

Event hand-to-cup = C ,

Thus, Event drinking = D = M d C . (1)

Using the basic relationships, events can be combined in different ways to create many other
new events, which means that multiple events can be detected simultaneously. These could
be more complex, and involve multiple objects, which we will consider in future work.

4 Experiment

In this section the method and lower-level algorithms we used are described, then the results
are discussed.

4.1 Method

To analyse the performance of our approach, we used the action of drinking as an example,
and tested it with five people. Each subject was asked to act a drinking action while in a
sitting position. The scene was set up differently in each case, to test the robustness of the
method. The aspects to be considered include: age, lighting condition, sitting distance from
the camera and which hand was used for picking up the cup. Table 1 lists the situation of
the subjects. The sensor used in the experiment was Microsoft Kinect, which has a colour
camera and a depth sensor. The registration between the colour and depth images was done
using OpenNI API framework [6] based on the device intrinsic parametres. Face detection
was implemented based on Viola-Jones object detection algorithm [16]. The position of the
mouth was defined to be one third up from the bottom-centre of the bounding box of the face.
The cup and hand tracking was implemented using the Continuously Adaptive Mean Shift
(CamShift) algorithm [3]. The distance threshold for both hand-to-mouth and hand-to-cup
was set at 10 centimetres.

Subject Age Day/Night Sitting Distance Right/Left Hand
1 20s daylight 1.5m left
2 30s daylight 2.1m right
3 30s indoor lighting plus sunlight 2.1m right
4 50s indoor lighting 1.7m left
5 60s indoor lighting 1.7m right

Table 1: Experimental subjects.
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4.2 Results and Discussion
Figures 5, 6 and 7 show the results from three of the five subjects. In each figure, the top
plot shows the distances over time, and the bottom plot show the event intervals based on
the threshold. In Figure 5, the subject performed one drinking action including picking up
the cup, drinking, and putting down the cup. From the distance plot, we can see that hand-
to-mouth becomes small during hand-to-cup being small. After applying the threshold the
event intervals are calculated, and they are shown on the bottom plot. This drinking action
happened in the anticipated way, with hand-to-mouth happening during hand-to-cup.

Another subject acted rather differently in the experiment (Figure 6). At the beginning
the subject attempted to pick up the cup twice, but did not perform the drinking. The third
time, the subject actually completed a drinking action. In the interval plot, we can see that the
hand-to-cup event happened three times, and only on the third time did the hand-to-mouth
event happen during it.

In real cases, it is common to see people have multiple sips before they put down the cup,
and this is what happened in this case. Figure 7 shows a very clear distance change of hand-
to-mouth, with it twice becoming small while the hand-to-cup distance remains under the
threshold. The result from the interval plot at the bottom indicates the accurate recognition
of two drinking events within one hand-to-cup event.
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Figure 5: Subject 1 results: distances (top) and intervals (bottom).

During all the experiments, the object tracking was accurate and the interest objects
were tracked from the beginning to the end. However, sometimes the tracking could be lost
due to the robustness of the tracking algorithm. If tracking of an object is lost, we simply
define the state of all events that rely on that object’s position to be unknown. It is then
left to the software that is receiving those events to decide what to do with that information.
The camera was all set up in front of the person while the person was sitting on a chair
during the experiments. However, the camera angle can be changed because as long object
tracking is maintained, a different viewpoint will not affect the distance measurement or
spatio-termporal reasoning from depth information.

5 Conclusion and Future Work
Depth images provide robust location information for objects in 3D space, and sensors are
becoming cheap, which allows everyday monitoring applications with useful features at low
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Figure 6: Subject 2 results: distances (top) and intervals (bottom).
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Figure 7: Subject 3 results: distances (top) and intervals (bottom).

cost. We propose a home monitoring method for describing and recognising human daily
activities based on spatial (distance measurement) and temporal (interval algebra) cues. We
tested the method using a drinking action with real users against different indoor settings,
in fact the method can be applied to various indoor activities, such as reading newspapers,
using TV remote control, sitting down and using a phone.

The main contribution of this work is that we employ vision-based human action recog-
nition in a home monitoring system, targeting real use in daily life, particularly for elderly
people’s home care, where the computer vision literature is lacking. Also, the use of a depth
sensor provides 3D information that has a great advantage over conventional colour cameras
alone. We intend our continual ambient home monitoring system to output a stream of high
level events. Application programs would then use a publish/subscribe system to receive the
events and produce useful services for users, such as activity logs or alerts.

We have demonstrated the proposed method by detecting drinking. It can be easily ap-
plied to other activities, especially when there are multiple events involving multiple objects
happening interactively and simultaneously. For instance, a person sitting on a chair by a ta-
ble drinking tea while reading a paper. The method is expected to handle this complexity. A
previous work demonstrated a temporal network structure to efficiently respond to multiple
events in interval algebra [7].
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In future work, we will test with more subjects, and especially with elderly people. The
test will not be limited to drinking events, but various indoor activities. Additionally, the cur-
rent software only tracks one hand at a time, so we will track both hands simultaneously and
accept events from either one. Currently we use a simple threshold to convert distances to
intervals, but we will investigate hysteresis thresholding to avoid any instability if a distance
lingers close to the threshold. The relationship description between objects is not limited
to Euclidean distance, and in future work other distance measures could be applied to dif-
ferent action events. Detection and tracking algorithms are conventionally applied to RGB
or greyscale images, and this is what we have implemented. However, we are investigating
applying or adapting these algorithms for use on depth images or a combination of RGB and
depth images. In the long term, our proposed monitoring system could be considered as a
component of infrastructure in the home, and implemented as a service oriented architecture.
Other assistant services would be built on top of it, for the inhabitant(s) of the home, care
givers, home automation or robotics.
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Abstract 

The aim of this paper is to evaluate the performances of existing motion detection 

algorithms on a moving transport where there exists the main problem of a large 

dynamic background. This paper provides a comparison of four well known 

background subtraction algorithms on a bus sequence. The results show that these 

conventional methods are not really suitable for this scenario and the analysis is 

provided with explanations for each algorithm. A few suggestions have also been 

proposed to minimise this problem. 

1 Introduction 

Detecting moving objects in a scene is one of the most fundamental and important tasks in 

video surveillance. There are many challenges that one may encounter while performing 

this task. The difficulty of the task may vary depending on a lot of factors such as the 

environment, lighting conditions, weather conditions, complexity of the scene etc. The 

surveillance could be taking place in an indoor or an outdoor environment. The system has 

to adapt to gradual illumination changes caused by the time of the day and also some 

sudden change in lighting. The scene could vary from a very simple one with a 

homogeneous background, to a complex scene with a cluttered background. There could 

also be some occlusions of the objects being observed. In complex scenes, there might be 

specific objects that should be considered as a background even though they are moving. 

These could be shadows of the actual objects or branches of trees swaying in the wind. 

These types of objects are referred to as dynamic background. The algorithm should be 

able to filter out these objects while segmenting the foreground. 

In this paper, the scene under study is a moving transport carriage such as a bus. This type 

of scenario is very complex because of the design of the bus. There are various challenges 

associated with this scene. There could be sudden and extreme lighting changes when the 

bus moves into or comes out of a subway. There would also be constant changes in the 

direction of light falling onto the bus based on the direction in which the bus is moving and 

also the time of the day. However, the main problem in this scene is the moving 

background outside the bus that is observed through the windows. When the bus is in 

motion, the scene outside is random and constantly changing. The observed objects could 

be trees, buildings, sign posts, other vehicles or even people walking by the side of the 

road. These form a significant portion of the frame captured by the camera. They pose the 

real test in this problem as it is extremely difficult to isolate and eliminate this moving 

background from the scene. The window region cannot be masked out of the frame 

physically as a person inside the bus standing in front of the window would be masked out 
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as well. The different algorithms are briefly explained in section 2 of the paper. Section 3 

deals with the experiments and the results followed by discussion and conclusion in the 

remaining sections of the paper. 

2 Methodology 

The different methods used in the experiments are discussed in this Section. A simple yet 

efficient method for background subtraction with respect to a median background [1] is 

given in Subsection 2.1. An adaptive Gaussian Mixture Model technique is presented in 

Subsection 2.2. This method is based on Zivkovic’s publication [2]. In Subsection 2.3, an 

approach based on Eigenbackground by Oliver et al. [3] is described. Subsection 2.4 

outlines a method based on Colour Difference Histogram [4].   

2.1 Adaptive Median method 

This is one of the simplest methods of background subtraction where the background 

model is the median of N frames. The background estimate is the median at each pixel 

location over the sampling size. A recursive filter is used to estimate the median by using 

the following update equation where B denotes the median background and I denotes the 

current image: 
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(1)  

The pixel classification is done with the help of a threshold T. 

 |  (   )     (   )|    (2)  

This method is computationally efficient, simple and robust to noise. 

2.2 Adaptive Mixture of Gaussians 

The Gaussian Mixture Model (GMM) is one of the most widely used approaches in the 

field of background subtraction. Each pixel in the image is modelled by a probability 

density function. The foreground pixels are then detected based on the variance in the pixel 

intensity level. Usually in Gaussian Mixture Model based approach, the number of 

components for each Gaussian is fixed. This approach is an adaptive form of GMM where 

the number of components of the mixture is varied for each pixel in an on-line procedure 

[2]. The pixel distributions are updated depending on a time period T. The GMM with K 

components is given is 

 

 ̂( ⃗|        )   ∑ ̂   ( ⃗   ⃗⃗⃗̂⃗   ̂ 
  )

 

   

 (3)  

where K is the number of Gaussian distributions,   ⃗⃗⃗̂⃗  are the estimates of the means and  ̂  
are the estimates of the variances of the Gaussian components. New data samples are 

added by updating the weight, mean and variance with the help of a constant   which is 

assumed to be 1/T. The component with the largest weight  ̂  is set as the owner of the 

sample, if it is deemed to be ‘close’ enough. The closeness is calculated by using the 

Mahalanobis distance and checking if it is less than a threshold value [2]. The closest 

component is then set value of 1 while all the other components are set a value of 0. The 

background model can be approximated by using the first B largest clusters by 
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B is calculated by first sorting the components in descending order of weights and then 

applying, 
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) (5)  

where cf is a measure of how long an object can remain as a foreground without affecting 

the background model. 

2.3 Eigenbackground based approach 

In this method, an eigenspace is built to model the background for segmentation. In order 

to build the eigenspace, principal component analysis (PCA) is used. This helps in 

reducing the dimensionality and hence the complexity of the problem. The background 

model is first considered for N images from which the mean background image    and its 

covariance matrix    are calculated. For performing PCA, this matrix has to be 

diagonalised by 

            
  (6)  

where     is the eigenvector matrix of the covariance and    is the corresponding diagonal 

matrix of its eigenvalues. 

While performing PCA, only the M largest eigenvalues are used to reduce the 

dimensionality of them. Therefore, only M eigenvectors are used to get a    matrix. The 

values used for modelling the background are stored in a feature vector form created by 

       
    where            is the mean normalised vector form of the image. 

This eigenspace effectively models the probability distribution function of the background 

and so, the moving objects do not provide significant information to this model. This 

means that the actual background alone can be obtained from the sum of the eigenvectors. 

Once the background model is obtained, the Euclidean distance between the 

eigenbackground image           and the input image    is calculated as 

     |      |    (7)  

This distance is compared to a threshold   and the moving objects are segmented when this 

distance is above the threshold. 

2.4 Colour Difference Histogram based segmentation 

This method involves background extraction by clustering of each pixel over a sequence of 

images by using their colour difference. Then the minimum distance is found by 

   (     )      
    

  (       )               (8)  

The minimum distance is then compared with a threshold to obtain a classification of the 

pixel into that cluster. If the classification is not possible, it is set into a new cluster and the 

values are updated and the number of pixels in the new cluster is set to 1. 

            

   (       )      (   ) 

 (       )    

(9)  
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where nxy is the cluster number at the pixel (x,y) and RGB(x,y,nxy) denotes the red, green 

and blue values of the current pixel (x,y) in the cluster nxy. Once all the background pixels 

have been extracted, the background model is then used for segmentation of the 

foreground. 

The segmentation is based on the colour difference histograms for all three colours Red, 

Green and Blue between the input image and the extracted background image. According 

to the authors, these histograms resemble a Gaussian distribution with zero mean with the 

foreground pixels showing a variance from the mean value. Hence, first turning points for 

the three colours are used to obtain a threshold value. A turning point in the histogram is 

defined as a point where there are maxima or minima. 

          [   ]         [ ]      

      [ ]         [   ]  

        

(10)  

where k ranges from 1 to 252.  

This threshold value is used to compare the colour difference image of the next input 

image and the background image. If the difference is more than the threshold, then the 

corresponding pixel is a foreground object. Otherwise, it is considered a background. 

3 Experiments and Analysis 

The above algorithms were evaluated on a video sequence captured from a fixed camera 

inside a bus. The sequence has the bus at rest initially, and then the empty bus moving for 

a while and finally a person enters the bus and sits in one of the seats at the front of the 

bus. It is 1000 frames in length at a frame rate of 29 frames per second. Each frame size is 

320x240 pixels. The ground truth of the bus was manually labelled for each of the 1000 

frames for comparison with the results of the algorithms. Since pixel level segmentation is 

under consideration, this process is generally time consuming as the outline of the person 

changes slightly every four or five frames on an average due to the capturing limitations of 

the camera. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: ROC plots for the four algorithms. 
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The Receiver Operating Characteristic (ROC) plot for the four algorithms is shown in 

Figure 1. This shows the plot of the false positive rate or 1-specificity versus the true 

positive rate or the sensitivity. It is interesting to note that all the algorithms are inclined 

towards the perfect classification side (FPR-0, TPR-1). This would imply that these 

algorithms seem to work fine with the sequence. But, when viewing the outputs 

qualitatively, it could be seen that the moving background problem persists in all the 

algorithms. The reason the false positive rates are so low for high true positive rates is that 

the number of true negatives is very high compared to the number of false positives. This 

is illustrated in the example below.  

 

 

 

 

 

 

 

Figure 2: Sample Frame, Ground Truth and Typical Segmentation Output 

In figure 2, the False Positive Rate (FPR) is FP/(FP+TN), which is 0.0611. The True 

Positive Rate (TPR) is TP/(TP+FN), which is 0.9547. Hence, although the FPR seems to 

be very low (around 6%) for a high TPR (around 95%), the dynamic background can be 

seen quite clearly here because FP forms 5.5% of the image (4233/76800) and TP forms 

9.5% of the image (7274/76800). In other datasets, it is noticed that the dynamic 

background does not contribute to even 1% of the image. Even in cases where it is around 

5% of the image, the true positive pixels form more than at least 30% of the image and 

hence the false positive pixels do not form a significant part of the segmented frame. This 

can be inferred from the standard datasets available. This difference makes this problem a 

challenging one. 

Another way to analyse the algorithms is by using Recall-Precision plot which is shown 

for the different algorithms in Figure 3. These plots compare the Recall of the algorithm 

which is given by the True Positive Rate and the Precision of the algorithm which is the 

ratio of True Positives (the person in this case) to the total number of Positives (the pixels 

detected as foreground). A high recall implies that all the true positive pixels have been 

segmented properly, but a lot of false positives are also present in the result. With respect 

to the video sequence, it means that the person is completely segmented without any false 

negative pixels, but in addition to that, there are a lot of useless pixels also present in the 

segmented frame. The frame shown in figure 2 is actually an example of high recall. 

Higher precision means better relevance and more precise results, but may imply fewer 

results returned. This means, to achieve a high precision, all the pixels segmented must be 

true positive pixels, but this does not necessarily mean that all the true positive pixels 

would be segmented. There could be some pixels on the person missing but there should 

be very less or no false positives present like the moving background. 

The ‘good’ corner of the plot is the top-right corner which has a high precision value for a 

high recall value. Towards this end, all the true positive pixels are segmented while the 

false positive pixels are discarded. From figure 3, it can be seen that the algorithms are not 

very accurate when they have a high recall, i.e. all the true positive values (in this case, the 

person) is present at lower thresholds, but at the same time, there are a large number of 
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false positive values as well. This can also be seen in the Recall-Precision plots. The 

precision drops rapidly towards the higher end of the recall axis. 

A particular thing to note is that none of the algorithms are able to attain anywhere close to 

100% precision, even at low recall values. The highest is around the region of 85% with 

the Eigenbackground based approach. This is because of the ever presence of the moving 

background in all the results. A high precision should mean there should be no false 

positives in the segmented output. Since all the results have significant false positives, the 

precision is not very high.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Precision Recall plots for the four algorithms. 

The following part is the analysis of each algorithm against the video in detail. An example 

frame with the corresponding segmentation is shown for each algorithm in the image 

below. It might seem logical that the threshold corresponding to high true positive rate and 

low false positive rate is the best threshold. However, the important thing to consider here 

is a proper balance between the true positives and the false positives. It depends on 

whether a perfect segmentation is required or a noiseless output is required. At first glance, 

a threshold value producing TPR around 0.9 with FPR around 0.1 might seem the best 

choice. However, increasing the threshold value at the expense of TPR is not a bad choice. 

This is because we are looking to solve the moving background problem which forms the 

majority of the false positive pixels. 

3.1 Adaptive Median method 

The adaptive median method was experimented with various thresholds levels. As the 

threshold value increases, the number of positive detections decreases because more pixels 

fall in between the threshold value and the mean of the distribution. 

It was observed that the adaptive median technique does not work really well with a 

considerable lighting change. This is because the variance of the pixels is not effectively 

modelled in adaptive median method. The seats are segmented as foreground here because 

the colour intensity level has just changed and the simple median background is not able to 

track this change properly as can be seen in figure 4. There are some false negatives as the 

algorithm has yet to adapt to the lighting change completely. These false negatives could 
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be reduced further by using a connected components algorithm and filling the missing 

pixels. 

 

 

 

 

 

 

 

Figure 4: Example segmented frame output for Adaptive Median method. 

3.2 Adaptive Mixture of Gaussians 

Seven different threshold values were tried for the adaptive Mixture of Gaussians method. 

These threshold values are compared with the Mahalanobis distance value to determine the 

closeness of the pixel with the components. Here again, as the threshold value increases, 

the number of positives decreases as many pixels would fall within the threshold value and 

get subtracted as background. 

From the outputs of the Mixture of Gaussians approach, it was observed that the shadow 

problem still exists. This method, however, adapts to a sudden lighting change in a much 

better way than the adaptive median method. The different Gaussians for each pixel 

effectively model the pixel distribution under different lighting conditions. Therefore, the 

segmentation process is not affected by the lighting changes in the sequence.  

A main problem of this method is that the foreground starts to move into background after 

a short while. This can be seen in figure 5. In general motion segmentation scenes, a 

foreground object can be considered to become a background object once it remains static 

after a fixed amount of time. In this case however, the subject has to remain a foreground 

object as long as he remains in the view of the camera. This problem can be reduced while 

updating the background model by adjusting the value of    and α. 

 

 

 

 

 

 

 

Figure 5: Example segmented frame output for Adaptive Mixture of Gaussians method. 

3.3 Eigenbackground based Approach 

In the Eigenbackground based approach, the threshold value is used to compare the 

Euclidean distance between the Eigenbackground image and the input image. Six different 

thresholds were used for this approach and the results are shown in the ROC plot in figure 

1. 

The Eigenbackground approach results show that the algorithm adapt well to lighting 

conditions as there are very few false positives inside the bus throughout the length of the 

Proc. of the 3rd British Machine Vision UK Student Workshop (BMVC’11 WS, Dundee, Scotland, 2nd September, 2011)

45



8 Varadarajan, Miller, Zhou, Zhang: Motion Detection in Moving Transport 
 

 

sequence. The moving background problem exists here as well although it is not very 

pronounced compared to the previous two algorithms. At higher thresholds, the number of 

false positives (window region) is lower compared to the other algorithms; also there is a 

high sensitivity. The Eigenbackground approach based on eigenvalue decomposition 

effectively models the different illumination changes, either global or local. This is 

because the Eigenbackground is basically an image that is formed by combining 

background frames under various lighting conditions. This means any illumination change 

in the input frame is handled very well by the background model. This is illustrated in 

figure 6. 

 

 

 

 

 

 

 

Figure 6: Example segmented frame output for Eigenbackground method. 

3.4 Colour Difference Histogram based segmentation 

The colour difference histogram based motion segmentation algorithm was tried with 

seven different thresholds ranging from very low positive values to very high positive 

values. It is similar to the Mixture of Gaussians approach in the sense that both the 

algorithms use clustering of pixels based on probability. Therefore, similar results to the 

Mixture of Gaussians approach can be seen here. The algorithm handles lighting changes 

very well; however, there are a large number of false negatives as time progresses. This 

could be corrected by updating the background model suitably, like in the case of the 

Adaptive Mixture of Gaussians approach. An example frame is shown in figure 7. 

 

 

 

 

 

 

 

Figure 7: Example segmented frame output for Colour difference histogram based method. 

4 Discussion 

The moving background problem is seen to exist in all the approaches. This is because all 

these approaches are based on colour intensity values and the moving background also 

exhibits change in intensity in the same way as the foreground. The algorithms view the 

moving background in the same way as the foreground and hence, they are not able to 

effectively eliminate them. The algorithms, though different by definition are all similar 

approaches under a same framework. For instance, the Mixture of Gaussians and the 

Colour Difference Histogram approach perform pixel clustering depending on the variance 
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of the pixels. The Eigenbackground approach uses PCA which is also used to model the 

distribution based on the variance. On the other hand, these algorithms are also contrasting 

in the sense that the MoG approach and the colour histogram approach build models for 

each pixel in the image whereas the Eigenbackground approach builds the model based on 

the variance in the entire image.  

Out of the four algorithms, it can be easily seen the Eigenbackground based approach 

performs the best. This is inferred from the results, the ROC plots and the R-P plots. The 

adaptive median approach does not adapt well to the lighting changes, but removes the 

moving background fairly reasonably. The statistical approaches work well with lighting 

changes but fail to remove the moving background.  

The Eigenbackground approach is still prone to errors due to the moving background 

problem. There is scope for improvement by adaptively varying the threshold along with 

the Eigenbackground model. The above approach uses a constant threshold throughout the 

sequence. Further, the threshold values in the window region could be updated in a manner 

different from the rest of the bus. This is possible because the pixel distribution in the 

window regions is different from the rest of the bus. The pixels in the window region 

mostly lie towards the white end of the colour map. Any moving object observed outside 

the bus is different in colour from the actual background and is usually darker. This means 

that the shift in the pixel distribution would be from 1 to 0 for example, if the colour model 

is expressed as a fraction with 1 representing white and 0 representing black. 

Inside the bus, however, this shift would be different when there is a foreground object. 

This is because, in the original background, the window regions are bright in intensity 

compared to the internal structure of the bus. Therefore, the shift in the window region 

would be mostly from white towards black while the shift inside the bus would be either in 

the other way or there would be very little shift. In the case that there is a shift towards 1 

inside the bus, this would still be different from the one occurring in the moving 

background region because the shift in the moving background would be starting at a much 

higher value compared to the one inside the bus. This information could be used while 

choosing the threshold for the Eigenbackground approach. 

In a typical bus, the camera usually captures the fixed background and then the moving 

background without any foreground when the bus is empty initially. This moving 

background could be modelled by a learning algorithm initially and this model developed 

for the moving background could be used in conjunction with the Eigenbackground model 

for the fixed background to adaptively remove the moving background when there are 

foreground objects as well in the scene. 

Another way to tackle this problem is to combine the Eigenbackground approach with a 

pixel concurrence technique similar to the one used by Seki et al [5]. This could be done 

by using image blocks and finding the correlation between neighbouring blocks. The 

spatial variations of the pixels could be combined with the temporal variation of the 

Eigenbackground approach to provide a better performance. These hypotheses would be 

experimented in the immediate future.  

5 Conclusion 

In this paper, four well known background subtraction algorithms have been evaluated 

with the bus sequence. These algorithms have been known in literature to work with 

common dynamic background video sequences. However, it could be seen from our results 

that these algorithms don’t work very well with the bus sequence as the percentage of the 
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moving background in the image is very large. The work in this paper is the initial step in 

developing a novel motion detection algorithm for moving transport and our future work is 

concerned with improving the accuracy of detection and reducing the false positive rate 

caused by the scene outside the window by experimenting on the hypotheses discussed 

above. 
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Abstract

3D face reconstruction is essential for a number of applications. Most approaches are
aimed at producing accurate models and make use of high levels of control to achieve
this, such as through restricted motion, structured light, or specialist equipment. However,
there is also a considerable market for reconstructions in uncontrolled environments but
where a lower level of accuracy is acceptable, for example, in avatar generation for games.
It is this that we are trying to achieve, specifically: fast, approximate reconstruction using
multiple views from a single low-cost camera in a largely uncontrolled environment.

We present a multi-step process combining: an extended Viola-Jones face detector
and Active Appearance Models (AAM) for feature detection; Sparse Bundle Adjustment
(SBA) for reconstruction; refinement; and texture generation, to produce a high-quality 3D
model of a face. We describe the method in detail and present several visually convincing
results.

1 Introduction
3D face reconstruction has many uses, for example, in face recognition, film character cre-
ation, and teleconferencing. Applications can be broadly categorised using two factors: the
required accuracy and the extent to which the environment can be controlled. Solving face
reconstruction with high accuracy and little control is a hard problem, however, compromis-
ing one for the other makes the problem more manageable. There are many methods for
reconstruction that produce accurate models and that are highly-constrained and/or require
many resources, such as laser-scanning, structured light, or multi-view stereo. Approaches
to face reconstruction in uncontrolled environments but where a lower level of accuracy is
acceptable are fewer, despite the fact that is there is potentially a considerable market for such
techniques, for example, in avatar generation for games. It is this gap that we are trying to fill,
specifically: fast, approximate reconstruction using multiple views from a single low-cost
camera in a largely uncontrolled environment.

There are several difficulties inherent in using a few, uncalibrated, low-quality views.
Being restricted to a single camera means images taken of the face will not be simultaneous
and so there is likely to be minor variation in the shape between views. Also, in many
situations the required views are produced by rotating the head, rather than the camera,
introducing further deformation. The quality of images retrieved from a low-cost camera

© 2011. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.
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2 RAWLINSON, BHALERAO: 3D FACE RECONSTRUCTION

Figure 1: A face from the IMM face database, reconstructed from three views. The left-most
images show the faces and their detected feature points. The right two show the reconstruted
mesh, without and with texture.

are often poor, suffering from low dynamic range, noise, compression artefacts, etc., as well
as being of a low resolution — although this is gradually improving as camera technology
advances and devices become cheaper. Also, due to the likely use of the system, lighting
conditions are liable to be non-ideal and changing and the direction from which the photos
are taken unknown.

There are many different approaches to face reconstruction and shape reconstruction in
general. A few examples include shape-from-shading [14, 17], model fitting [15], and space
carving [7].

One approach that encompasses similar elements to our method is the work of Breuer et
al. [2], which uses Support Vector Machines (SVMs) to detect feature points and then fits a 3D
Morphable Model (3DMM) [1] to a single view to produce a ‘plausible and photo-realistic’
model. Similar work includes that of Gu and Kanade [5]. Our method is most similar to that of
Zhang et al. [18], which uses multiple consecutive monocular views to perform triangulation
of a set of manually marked feature points and then fits a high-resolution mesh to match.
While these all produce reasonable results, they suffer from a reasonably long run-time, taking
up to several minutes — a time that may be unacceptable in many applications. In comparison,
our method is fast, taking less than a second, and requires no manual initialisation.

The rest of this paper describes the method in detail followed by presentation of results
and discussion. Figure 1 shows an example reconstruction.

2 Method

The process requires one or more images of the face from approximately known views. In
the majority of cases we use three images: one from the front and two three-quarter profiles.
Though the method does work with a single view, results are much less accurate. Note that
our system can also be run on a video sequence of a person rotating their head, automatically
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Figure 2: Overview of the face reconstruction process. I1...l are the input images, D is the
feature detection process, X1...l are the detected feature sets, R is the reconstruction step,
Y and P1...l are the reconstructed coarse model and camera information, Rf is the model
refinement stage with weights, W, as an additional input, G is the texture generation process,
and Z and T are the refined model and generated texture that are combined to produce the
final mesh.

selecting the required views.
Given multiple input images we produce a high-resolution, reconstructed 3D mesh:

I→ {Y,T, f ,M}, where I = {I1, · · · , Il} is a set of l input images, Y is a reconstructed set
of n 3D vertices with triangulation f , T is a generated texture image, and M : N→ R2 is
a mapping from vertex indices to texture coordinates. M and f are precomputed as they
are independent of the input images. The process has four distinct stages: face and feature
detection, model reconstruction, model refinement, and texture generation. Figure 2 shows an
overview of the process.

2.1 Feature Detection
The initial stage of the process uses Active Appearance Model (AAM) [3] to detect feature
points of the face.

First the face is detected, giving a bounding box bk = {xk,yk,wk,hk}, with a centre at
(xk,yk) and a width and height of wk and hk respectively. An extended Viola-Jones face
detector [9, 16], which employs a boosted cascade of Haar-like features, is used to detect the
face region. The choice of detector is largely inconsequential as it is simply used to initialize
the AAM, using the mean points, X, and a learned scale α and translation (βx,βy) relative to
the detected face rectangle,

Xk0 = αX
[

wk 0
0 hk

]
+1([βx βy]+ [xk yk]).

They are then fit independently to each image using a AAM with model Mk:

Xk = AAM(Ik,Mk,Xk0).

We use the I1I2I3 colour space, as proposed by Ohta et al. [12], where the image channels
are strongly decorrelated. This has been shown by Ionita et al. [6] to be more effective than
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4 RAWLINSON, BHALERAO: 3D FACE RECONSTRUCTION

Figure 3: Upper-left shows the detected face, lower-left shows the texture recovered as part of
the AAM process, and right shows the detected features.

using a single grey channel or simple RGB. As in [4] we build a separate model for each view,
with mirrored views being considered the same. Figure 3 shows the detected feature points.

A weakness of using an AAM as a feature detector is that many of the points lie on edges
and so tend to fit to a line rather than a specific point. There is therefore not necessarily a
point-to-point correspondence between views but rather one from line-to-line. This is handled
during the reconstruction phase.

When using a video sequence the optimal views can be selected automatically by fitting
all models at each frame and using the frames that have the lowest reconstruction error for
each model. This allows a short video of a person slowly turning their head to be used rather
than having them correctly position their head for each view and then manually taking a
photograph.

2.2 Model Reconstruction
Once the feature points have been detected their 3D positions can be reconstructed. Part of
this process also involves reconstructing the parameters of the camera used to take the images.
This information is later used to refine and texture the model.

Rather than considering the images taken from a stationary camera with the head rotating,
as is the more likely case, we reconstruct the model assuming a stationary head and rotating
cameras. The two can be considered equivalent assuming the model does not change between
views. We therefore need to recover one set of intrinsic parameters and as many extrinsic as
there are views.

Given corresponding feature points in each image, Xk, we reconstruct their 3D positions, Y.
3D vertices are projected to 2D by:

Xk = PkY,

where Pk is a projection matrix composed as

Pk = C(Rk|tk) .
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Figure 4: A coarse face model reconstructed from three views.

Rk, tk, and C form the standard camera and transformation matrices describing the position,
direction, and intrinsic properties of the camera.

The fitting is performed using Sparse Bundle Adjustment (SBA) [10], which is based on
the Levenberg-Marquardt algorithm but optimized for use when the relationship between
parameters is sparse, by minimising the reprojection error:

{Y,P} ≈ argmin
{Y,P}

l

∑
k=1
‖Xk−PkY‖.

The process for fitting summarised as follows:

1. Initialize the 3D model This is done by using the x and y values from a single view,
usually the frontal, and the z values from the mean head aligned to that view.

2. Initialize the intrinsic camera parameters These can be set to either likely values
or known values. It is assumed that all images are taken with the same camera with
unchanged intrinsic parameters.

3. Initialize the extrinsic camera parameters The positions and rotations of the camera
can be estimated based on the views used to train the AAMs.

4. Fit the camera parameters This is done using SBA by minimizing the reprojection
error. In many situations the intrinsic camera parameters are known and these can be
omitted from the optimization to improve accuracy.

5. Move line-points As previously mentioned, many points lie on lines and so do not
necessarily correspond between views. To overcome this we move the relevant detected
points along their lines to minimize the distance to their corresponding point when the
current model is projected into that view.

6. Fit the vertex positions Again this is done using SBA in a similar manner, optimizing
for vertex points rather than the camera parameters.

7. Repeat steps 4-6 until converged When the change between iterations falls below
some threshold. Usually only a few (< 5) iterations are required.

Figure 4 shows the reconstructed 3D positions of feature points on a face after this process.

Proc. of the 3rd British Machine Vision UK Student Workshop (BMVC’11 WS, Dundee, Scotland, 2nd September, 2011)

53



6 RAWLINSON, BHALERAO: 3D FACE RECONSTRUCTION

Figure 5: A coarse face model, Y, and subsequent refinement, Z. The mesh has gone from 64
points to 267.

2.3 Model Refinement
The reconstructed 3D model points, Y, are too few to form a useful mesh and so we fit an
existing mesh with a higher number of vertices.

This is achieved by ‘morphing’ the higher resolution model’s vertices, Z, to produce the
final set of vertices, Z. Each feature point in the model is treated as a control point for the
mesh. Each control point has a manually specified weighted influence over the rest of the
mesh that is Gaussian with distance from the control point, so nearby points are more affected
than those that are far away. This is coded as a matrix of weights that operate on the deviation
from the mean:

Z≈ Z+W(Y−Y),

where W is n×m matrix of weights.
As an additional step we further morph the model to improve alignment of edges with

those seen in the images, in particular the jaw/cheek line. We find the vertices in the high-
resolution mesh that correspond to the edges and move them along their normals until they lie
on the edge when projected onto the images. Again they have a weighted influence over the
rest of the model so the entire mesh is morphed to conform to the silhouette. Figure 5 shows
the result of this refinement.

2.4 Texture Reconstruction
The face model is textured using UV-mapping, which copies triangles of texture from a
texture image to their projection positions. This can be achieved using a function such as a
piecewise-affine warp (PAW) and requires a map, M : N→ R2, from model vertex indices to
texture coordinates.

M is produced using a least squares conformal mapping [8], which tries to preserve angles
between each face, so the mapping is very good locally but scale is not preserved. It is
precomputed using the mean model vertices, Z.

During rendering, every triangle, t ∈ f , in the model is warped from its position in the
texture image, M(t), to its projection, Pkt, in the output. In order to recover the model’s
texture we do the reverse of this and produce a texture image, Tk, for each input image, Ik:

Tk = PAW(Ik,Z, f ,M,Pk).
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RAWLINSON, BHALERAO: 3D FACE RECONSTRUCTION 7

Figure 6: The left most images show the weightings, Wk, used when combining texture maps
from multiple views. The right image shows one such merged texture map, T .

However, we require a single texture image and so we merge these, weighted by the
cosine of the angle between the surface normal, nk(u,v), and the vector from that point on the
surface to the camera, ck(u,v):

T (u,v) =
∑l

k=1 Wk(u,v)Tk(u,v)

∑l
k=1 Wk(u,v)

,

where Wk(u,v)≈ ck(u,v) ·nk(u,v).
In the case that a pixel in a texture map is not visible in the corresponding view, that is the

surface is occluded or the angle between the camera and the surface normal is greater than 90
degrees, then its weight is set to be zero.

Merging images from multiple views will inevitably lead to blurring where the recon-
structed model or its projection is not perfect. This is particularly noticeable along edges. As
the camera positions are known approximately beforehand, the weights can be precomputed
and manually adjusted to favour a single view in areas with strong edges, i.e., the eyes and
mouth. This can clearly be seen in figure 6.

3 Results and Discussion
Figures 1, 7, 8, and 9 show example reconstructions. Similarly to the results of Breuer et
al. [2], they are ‘plausible and photo-realistic’.

All were produced using three images of the subjects face. The Active Appearance Models
were built using 64 points and trained on the IMM face database [11]. The final meshes
have just 267 vertices, due to a commercial requirement at the time, though the system has
since been used with the Basel face model [13], which has some 50,000 vertices. The first
two reconstructions are from the IMM face database and were omitted when training. The
second two show real-life reconstructions produced in an office environment with subject
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8 RAWLINSON, BHALERAO: 3D FACE RECONSTRUCTION

Figure 7: A second example of a face from the IMM face database reconstructed from three
views.

unfamiliar with the system; images were chosen automatically from a short video sequence
with a resolution of 640 ×480pixels.

A quantitative evaluation of the process as a whole is currently difficult to produce as a
dataset comprising high-quality 3D reconstructions as well as multiple views in uncontrolled
conditions is required: two requirements that almost preclude each other. Such a dataset could
be produced synthetically and this is indeed planned as future work. However, the relaxed
requirements on the accuracy of the reconstructions means that an absolute comparison is of
a lesser importance than the robustness of the method and the visual quality of the results.
Indeed, Breuer et al. [2] provide a numerical result by asking several participants to visually
rate the accuracy as either very good, good, acceptable, or bad; though this approach seems
unsatisfying.

The implementation is largely unoptimised but, for example, we are achieving a sub-
second run-time to reconstruct faces as in figures 8 and 9 on an Intel® Core™2 Duo CPU @
2.20 GHz with 2 GB of RAM.

There is considerable scope in the presented method for improvements through future
work, both in the individual steps and in the system as a whole. Two principal directions of
further work are:

• A weakness in fitting individual AAMs to each view is that each must be separately
trained and so the system is restricted to only accepting images from views for which it
has been built. We propose to develop a method for overcoming this by dynamically
interpolating between AAMs to produce a new model specific to each view.

• An alternative means of overcoming this issue is to move from using several 2D AAMs
to a single 3D one. This also has the advantage of removing the need for reconstructing
the 3D positions of the points, though it requires fitting the camera parameters during
the model fitting process. Consolidating the individual models would also allow the
fitting to occur simultaneously in all views and thereby potentially reducing the error.
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Figure 8: The reconstruction of a real-life head. The three views were chosen automatically
from a short video sequence captured using a webcam.
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SELVAN : Boundary Extraction in Images Using HCS 1
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Abstract

Hierarchical  organization  is  one  of  the  main  characteristics  of  human 
segmentation.  A human subject  segments a  natural  image by identifying physical 
objects and marking their boundaries up to a certain level of detail [1]. Hierarchical 
clustering based segmentation (HCS) process mimics this capability of the human 
vision. The HCS process automatically generates a hierarchy of segmented images. 
The  hierarchy represents  the  continuous  merging  of  similar,  spatially  adjacent  or 
disjoint, regions as the allowable threshold value of dissimilarity between regions, for 
merging, is gradually increased. HCS process is unsupervised and is completely data 
driven.  This  ensures  that  the  segmentation process  can be applied to  any image, 
without any prior information about the image data and without any need for prior 
training of the segmentation process with the relevant image data.

The implementation details of HCS process have been described elsewhere in the 
author's work [2]. The purpose of the current study is to demonstrate the performance 
of the HCS process in outlining boundaries in images and its possible application in 
processing medical images.

1 Introduction
Segmentation can be thought as a process of grouping visual information, where the details 
are  grouped  into  objects,  objects  into  classes  of  objects,  etc.  Thus,  starting  from the 
composite segmentation, the perceptual organization of the image can be represented by a 
tree of regions, ordered by inclusion. The root of the tree is the entire scene, the leaves are 
the finest details and each region represents an object at a certain scale of observation [1]. 
Since the early days of computer vision, the hierarchical structure of visual perception has 
motivated clustering techniques to segmentation [3], where connected regions of the image 
domain are classified according to an inter-region dissimilarity measure. 

Hierarchical Clustering-based Segmentation (HCS) implements the traditional bottom-
up  approach,  also  called  agglomerative  clustering  [4],  where  the  regions  of  an  initial 
partition are iteratively merged. HCS procedure automatically  generates  a  hierarchy of 
segmented images.  The hierarchy of  segmented images is  generated by partitioning an 
image into its constituent regions at hierarchical levels of allowable dissimilarity between 
its different regions. At any particular level in the hierarchy, the segmentation process will 
cluster together all the pixels and/or regions which have dissimilarity among them less than 
or equal to the dissimilarity allowed for that level.

It  should  be  noted  that  HCS  process  is  quite  different  from  Hierarchical  image 
segmentation methods discussed, for example, in [5]. The hierarchy in the study [5] refers 
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2 SELVAN : Boundary Extraction in Images Using HCS.

to  the  multi-resolution  hierarchy  in  scale  space.  Also  HCS  process,  unlike  other 
segmentation methods like [6], [7] and [8], is not an iterative optimization process. Instead 
at  each  level  HCS  process  yields  an  optimized  segmentation  output  related  to  the 
dissimilarity allowed for that level.

Details of the implementation of the HCS process are described in the author's work in 
[2]. The purpose of this paper is two fold firstly to present the results of the objective 
evaluation of the performance of HCS process as a segmentation tool and secondly to 
present the possibility of how HCS process can be used as a computer aided monitoring 
(CAM) tool to assist radiologists to monitor abnormalities in X-ray mammograms.

The rest of the paper is organized as follows. Firstly the operation of the HCS process 
is outlined. Also the facilities offered by the GUI to display the HCS output is discussed. 
Secondly the performance of the HCS process is evaluated. Finally the success of HCS in 
segmenting medical images and using HCS process as an aid for radiologists are discussed.

2 Overview of the HCS Process
Following is a high-level description of the HCS process [2] (See Figure 1 for a flow chart 
representation) :
1. Give each pixel in the image a region label as follows :

If an initial segmentation of the image is available, label each pixel according to this 
pre-segmentation. The initial segmentation can be obtained by prior class information 
(for e.g. based on the user information). 
If no initial segmentation is available, label each pixel as a separate region. 
Set current dissimilarity allowed between regions, dissimilarity_allowed, equal to zero.

2. Calculate the dissimilarity value, (dissimilarity_value), between all pairs of regions in 
the image. 
Set threshold_value equal to the smallest dissimilarity_value.

3.  If  the  threshold_value found,  in  step  2,  is  less  than  or  equal  to  the  current 
dissimilarity_allowed value, then merge all those regions having  dissimilarity_value, 
between them, less than or equal to the threshold_value. 
Otherwise go to step 6.

4. If the number of regions merged in step 3 is greater than 0, then reclassify the pixels on 
the  border  of  the  merged  regions  with  the  rest  of  the  regions  until  no  more 
reclassification is possible. After all the possible border pixels are reclassified, among 
the merged regions, store the region information for this iteration as an intermediate 
segmentation and go to step 2. 
Otherwise, if the number of regions merged in step 3 is equal to 0 then, go to step 5.

5.  If  the  current  number  of  regions  in  the  image  is  less  than  the  pre-set  value, 
check_no_regions, then go to step 7. Otherwise, go to step 6.

6. If the current value of  dissimilarity_allowed is less than the maximum possible value 
then  increase  the  dissimilarity_allowed value  by  an  incremental  value, 
dissimilarity_allowed  =  dissimilarity_allowed  +  dissimilarity_increment,  and  go  to 
step 2. Otherwise go to step 7.

7. Save the region information from the current iteration as the coarsest instance
The above steps ensures that the segmentation does not depend on the order in which 

the image regions are processed. Normally in agglomerative clustering methods the cluster 
structure depends on the order in which the regions are considered [4]. The brute force 
approach, followed by the HCS process, where only those regions with the smallest overall 
dissimilarity are merged in each step, is the only solution to overcome this effect [9].
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The feature measure used by the HCS process to estimate the similarity is the actual 
distribution of the pixel values in a region surrounding the locations. This technique may 
be considered to work in a way similar to the human visual system where features for 
texture (region) segmentation are not consciously computed [10]. 

2.1 Graphical User Interface (GUI) for Displaying HCS Results

The HCS process generates a hierarchy of segmentation results, associated with a set of 
dissimilarity values. The segmentation output is stored at the end of the HCS processing. 
Subsequently  the  GUI  can  be  used  to  reproduce  the  resulting  segmentation  images 
associated with a dissimilarity value instantaneously. The GUI is designed in such a way 
as to  make it  easy for the user  to  view all  the different  solutions  and select  the most 
suitable. The easy viewing and scrutinizing of the segmentation output is achieved by the 
GUI by having the following facilities :
1. The hierarchical segmentation output can be viewed by using a slider bar giving the 

dissimilarity index.
2. Individual region properties like the number of pixels, the lowest, highest and average 

pixel value and the distribution of the pixel values within the region can be scrutinized.
3. The original image or another segmented image at a different level of dissimilarity can 

be compared with a segmented image by displaying them alongside each other and a 
dual cursor moves simultaneously on both the images.
The image shown in Figure 2 gives a screen captured image of the GUI and the user 

controls provided for the above listed facilities. The GUI facility will be useful for the user 
to choose the right segmentation to identify the regions which correspond to the healthy 
and diseased part of the breast tissue in X-ray mammograms (Section 3).

2.2 Objective Evaluation of the Performance of the HCS Process

To evaluate the performance of segmentation methods like HCS, which yield a hierarchy 
of boundaries, Precision-Recall curves, (Berkley benchmark) an alternative to Receiver 
Operating Characteristic (ROC) curve, is more suited [11]. The procedure to benchmark 
the performance of any boundary detecting algorithm, like HCS, is described as follows :

Figure 1: Flow chart illustrating the different operations of the HCS process [2]
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For each image a collection of human-marked boundaries, marked by different human 
subjects, constitutes the ground truth. The output of the boundary detecting algorithm, will 
be a boundary map with one pixel wide boundaries. The objective is to find out how well 
the algorithm's boundary map matches with that of the human subjects'. 

Traditionally,  one would "binarize" the boundary map by choosing some threshold. 
There are two problems with thresholding a boundary map: [12]
1. The optimal threshold depends on the application, and 
2. Thresholding a low-level feature like boundaries is likely to be a bad idea for most 

applications, since it destroys much information.
For these reasons,  the Berkley benchmark operates  on a non-thresholded boundary 

map. Nevertheless, one need to threshold the boundary map in order to compare it to the 
ground truth boundaries, but this is done at many levels. At each level, the two quantities 
-- precision and recall – are computed. In this manner the precision-recall curve for the 
boundary detecting algorithm is produced [12].

Figure 2: Annotated screen captured image of the GUI, to visualize HCS process output.
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The performance of the boundary detecting algorithm is measured by estimating the 
summary statistic as follows : The F-measure, which is the harmonic mean of precision 
and recall is defined at all points on the precision-recall curve. The maximum F-measure 
value across an algorithm's precision-recall curve is its summary statistic [12].

A subset of one of the natural scenes of the Berkley database [12] (Image ID 42049) 
(Figure 3 a) was used to evaluate the performance of the HCS process, as discussed above. 
Figure 3 shows the human subjects' hand drawn boundaries (Top row) and some of the 
HCS  process  intermediate  segmentation  output  (Bottom  row).  Figure  4  shows  the 
precession and recall plot for 228 segmentation levels of the HCS process. For the HCS 
process the maximum F-measure value was found to be 0.82 (Figure 4).

The corresponding scores for other segmentation algorithms ranges from 0.92 [13] to 
0.76 [14]. (See [12]). The algorithm which has got the highest score of 0.92 is supervised 
[13] while HCS process is unsupervised. Moreover the human subjects' boundaries, with 
which the algorithms' output is compared, outline only the major structures in the scene. 
For example none of  the human subjects has outlined the border of  the bird's  legs.  In 
contrast the HCS process has not only outlined the legs of the bird but has also outlined the 
subtle  difference  in  the chest  plumage of  the  bird (Figure 5).  This  outlining of  subtle 
differences within an otherwise a homogeneous region is found very useful in highlighting 
dissimilarities in diagnostic images. Because tissue abnormalities, in medical images are 
indicated,  by  part  of  the  image  being  dissimilar  from  other  homogeneous  areas 
representing healthy parts. 

3 Medical Image Segmentation Using HCS Process
The goal of medical image segmentation is to separate the image into regions that are 
meaningful for a specific task. This task may, for instance, involve the detection of specific 
section of organs or quantitative measurements made from the images.  Medical  image 
segmentation is a difficult task because of issues such as spatial resolution, poor contrast, 
ill-defined  boundaries,  noise,  or  acquisition  artefacts  [15].  The  medical  images  in  the 
Figures 6 and 7 illustrate this difficulty. Figure 6 shows a CT image of a section of the 
brain. The image area within the region of interest (rectangular area outlined in black) is 
made up of three different types of regions viz. Grey matter, White matter and the stroke 
affected area. The stroke affected area has been outlined in white by an expert. Figure 7 
shows the segmentation result obtained by Hierarchical Segmentation (HSEG) [16] which 
is very similar to HCS process. Figure 7 illustrates the difficulties faced by the HSEG 
process to segment medical images. Although the image pixels within the region of interest 
(ROI), have been segmented into three classes colour coded as Red (the diseased area), 
Green (white matter) and blue (Grey matter) it has misclassified some of the pixels not 
belonging to the diseased area as being diseased as well. This can be seen by the presence 
of red coloured pixels at the other end of the ROI outside the area outlined by the expert.

Figure 8 shows the segmentation of the same CT image (Figure 6) by the HCS process. 
It can be seen that the HCS process has successfully delineated the three different types of 
regions  viz.  Grey  matter,  White  matter  and  the  stroke  affected  area.  Comparing  the 
segmentation results  of the HCS process Figure 8 and with that  of  the HSEG process 
Figure 7, it can be seen that the HSEG process segmentation (Figure 7) is suboptimal while 
the HCS process is able to achieve a smooth segmentation as can be seen in Figure 8.
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3.1 Border Pixel Re-Classification
One of the unique feature of the HCS process is the border pixel classification operation 
(Figure 1). Border pixel reclassification is necessary because the merging process starts 

Figure 3: A natural scene from the Berkley database (subset of Image ID 42049) (a). Top 
row images are boundaries, marked by 4 different human subjects. Bottom row images are 
the HCS process boundary output when there were 22, 15, 10 and 6 regions.

a

Figure 4: Precision and Recall plot for 228 levels
Figure 5: HCS process segmentation 

of the natural scene (Figure 3 a)
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with individual pixels and the pixels are merged to form regions and subsequently regions 
are merged to form bigger regions and so on. During the initial merging pixels/regions 
belonging to different types/classes might get merged. This could happen, for example 
when  comparing  pixels/regions  over  a  small  neighbourhood,  where  the  dissimilarity 
between pixels/regions belonging to different types/classes of regions might be smaller 
than the dissimilarity between pixels/regions belonging to the same type/class of region 
because of the local in-homogeneity. However as the regions grow, during border pixel re-
classification, those pixels which had been merged as a result of comparison with smaller 
neighbourhood might subsequently be reclassified by properly comparing them with the 
rest of the pixels from a larger neighbourhood.

Border pixel reclassification was considered only for those pixels on the boundary of 
the  clusters  which  had  been  merged  with  other  clusters.  These  boundary  pixels  were 
removed one at a time from their original clusters. The pixel removed was considered as a 
region of its own and the similarity between the one pixel region and the regions bordering 
it (which include the original cluster to which it belonged to) were found and the single 
pixel region was merged with the most similar bordering region.

Figure 6: CT image showing the suspected 
area outlined in white by a neuroradiologist.

Figure 7: Segmentation of the Grey matter, 
White matter and Stroke affected regions and 

their boundaries by HSEG [16]

Figure 8: Segmentation of the Grey matter, 
White matter and Stroke affected regions and 

their boundaries by HCS [2]

Figure 9: Segmentation of the Grey matter, 
White matter and Stroke affected regions by 
HCS without border pixels reclassification, 

where misclassification had occurred.[2]
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Figure 9 shows the intermediate segmentation results of the HCS process, performed 
without border pixels reclassification. In Figure 9 the pixels belonging to the larger clusters 
of the major classes White Matter and the infarct are coloured as  Green and Red. Pixels 
clustered as belonging to the Grey matter class are not coloured. From Figure 9 it can be 
seen that the cluster belonging to the major class infarct has misclassified pixels on the 
other part of the image. 

Comparing the segmentation output of the HSEG (Figure 7) with that obtained by HCS 
without border pixel reclassification (Figure 9), it can be seen that they are almost the 
same. Since the similarity measures adopted by the HCS and the HSEG processes may or 
may not be the same it can be safely assumed that border pixel reclassification plays a 
crucial role in obtaining a smooth segmentation. 

Although only one example was shown to compare the performance of the HSEG with 
that of HCS. It is also shown how HCS process output is very similar to that of HSEG 
when HCS process does  not  perform border-pixel  reclassification. From this it  can be 
inferred  that  HCS  process  with  border-pixel-reclassification  will  always  give  a  better 
segmentation output when compared to HSEG. 

3.2 HCS Process as a Computer Aided Monitoring (CAM) Tool

X-ray mammography is the most effective tool for the detection and diagnosis of breast 
cancer, but the interpretation of mammograms is a error-prone task. Hence, computer aids 
have been developed to assist the radiologist. While Computer-aided detection (CADe) 
systems address the problem that radiologists often miss signs of cancers, Computer-aided 
diagnosis (CADx) systems assist them to classify the lesions as benign or malignant [17].

This study demonstrates a novel alternative system namely computer-aided monitoring 
(CAM)  system.  The  designed  CAM  system  can  be  used  to  objectively  measure  the 
properties of suspected abnormal areas in mammograms. Thus it can be used to assist the 
clinician to objectively monitor abnormalities. In brief the designed CAM system works as 
follows : Using the approximate location and size of an abnormality, obtained from the 
user,  the  HCS process  automatically  identifies  the  more  appropriate  boundaries  of  the 
different regions within a region of interest (ROI), centred at the approximate location. 
From the set of, HCS process segmented, regions the user identifies the regions which 
most likely represent the abnormality and the healthy areas. Subsequently the CAM system 
compares the characteristics of the user identified abnormal region with that of the healthy 
region; to differentiate malignant from benign abnormality. An example follows.

Figure 10 shows a X-ray mammogram (mdb102) of a dense glandular breast having a 
malignant asymmetry class of abnormality. Using the information provided in the mini-
MIAS database [18] the approximate boundary of the abnormality (Red circle Figure 10 a), 
was located.  The HCS process  was applied within a  ROI centred on the abnormality. 
Inspecting  the  HCS process  output  the  user  selected  the  region  corresponding  to  the 
abnormality  (Red  Figures  10  b,  c  and  d).  The  area  within  the  approximate  circular 
boundary,  other  than  the  abnormality,  was  selected  as  healthy,  (Green  Figure  10  d). 
Inspecting the HCS process output the user also selected a location, within the abnormal 
area, which was considered as the core of the abnormality (Yellow Figure 10 d and e). To 
estimate the dissimilarity between the abnormal and the healthy regions, the HCS process 
was applied only to the pixel locations within the abnormality (Red Figure 10 d and e) and 
the healthy (Green Figure 10 d and e) areas of the image. As the HCS process goes about 
merging  similar  regions  within  the  abnormality  and  the  healthy  areas,  the  maximum 
average dissimilarity, measured between the cluster having the user tagged location (within 
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the abnormality) and the clusters within the healthy region, is estimated. The heuristic used 
for  differentiating  malignant  from  benign  abnormality  is,  if  the  value  of  the  above 
estimated measure is less than fifty percent then the abnormality is benign else malignant. 
Graph shown in Figure 11 (a) demonstrates how the above measure and the criteria is able 
to classify the abnormality, under consideration, as malignant. Similarly the graph shown 
in Figure 11 (b) demonstrates how a benign abnormality is correctly classified. 

The technique used to rate the HCS process based CAM effectiveness was to give it 
one malignant case and one benign case and then test its ability to determine which is 
which. The designed CAM process achieved 100% success rate in classifying malignant 
from benign asymmetric and circulant class of abnormalities in 16 mammograms from the 
mini-MIAS. The HCS process classifications were matched with that given in the mini-
MIAS database [18].

ec

b

a

d

Figure 11: For mini-MIAS Mammogram images mdb102 and mdb097 graphs (a and b) 
showing the dissimilarity between the cluster having the user tagged location and other 
clusters belonging to the abnormality area and the healthy area.

a b

Figure  10:  mini-MIAS  mammogram  (Image-ID  mdb102)  with  the  location  and  the 
approximate  boundary of  the  abnormality  circled in  Red by the  user  (a).HCS process 
intermediate segmentation of four regions and their boundaries (b and c). Regions, and 
their boundaries, identified by the user as healthy (Green) and abnormal (Red) (d and e).
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4 Conclusion
Radiologists' expertise in reading diagnostic images calls for a combination of perceptual 
skills to find what may be faint and small features in a complex visual environment, and 
interpretive skills  to  rate their  (the features')  significance [19].  Computing systems are 
more consistent in their perceiving ability but they cannot match human interpretive skills. 
Drawing a line so as to limit the system's interpretive function has the virtue of achieving a 
complementary synthesis of system and radiologists' strengths [20]. However in practice 
the question of  where to draw the line in computer  aided detection/diagnostic  systems 
between perception and interpretation is problematic [21]. 

The HCS process based CAM system developed in this study might be able to address 
the above problem. Work is in progress to establish whether the HCS based CAM system 
augments the diagnostic capabilities of the radiologists.
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Abstract

This paper proposed a new approach to produce video descriptors based on the state-
of-the-art spatial pyramid method. At different resolution level of spatial pyramid, video
descriptors are extracted using either Bag-of-Features (BoG) representation or sparse
coding representation. Instead of concatenating descriptors directly, binary support vec-
tor machines are constructed for each level in order to capture characteristics at different
resolutions. The experiments are conducted with Gabor detector and 3D Histogram of
oriented Gradient (HoG) description. The proposed approach is tested on KTH action
dataset and Youtube action dataset with a three-level pyramid in both spatial and tem-
poral scale. The performance are compared with standard Spatial-temporal Matching
kernel , and experiments show promising results.

1 Introduction
Bag-of-Features representation based on local descriptors has been a very popular model
for action classification tasks. Visual codebook is first constructed by applying a clustering
algorithm, e.g. K-means, on descriptors set extracted from training videos. Each centre of
cluster is presented as a “visual word”. Then a histogram is formed by accounting the number
of descriptors that are quantized to each visual word.

Since histogram only captures statistical characteristics of the descriptors set, BoF rep-
resentation ignored all spatial and temporal information. To overcome this limitation, one
extension of BoF is Spatial Pyramid Matching kernel (SPM) approach proposed by Lazebnik
et al. [7]. SPM approach partitions image into increasingly fine sub-regions and computes
histograms of local features found inside each sub-region. The final feature vector for video
is a histogram from each sub-region concatenated with different weight according to level of
resolution.

By using SPM representation, a typical video descriptor constructed with 3 uniform lev-
els and 1024 visual words would have 36864 attributes, it would be computationally expen-
sive to applying non-linear multi-class SVM on both training and testing stage, especially
for large datasets which usually involve more than thousands videos.

In this paper, we developed a new approach to combine bag-of-features descriptors from
each pyramid level using support vector machine (SVM). We derive descriptors of sub-
regions using standard bag-of-features representation, descriptors from the corresponding

c© 2011. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.
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sub-region are classified using multi-class SVMs. The SVM decision values against each
action type can be viewed as an abstract description of the sub-region. Therefore, an efficient
descriptor would be formed by concatenating weighted decision values. The final descriptor
again would be then classified by standard non-linear SVM. Our approach builds SVM for
each sub-region separately; a single classification task only involves the same number of
attributes as visual codebook. Meanwhile, the tasks can be easily distributed to multicore
processors and computer clusters. Furthermore, in our approach, the number of SVM de-
cision values only depends on the number of training class labels, by concatenating SVM
decision values we significantly reduce the dimensionality of the final video descriptors. By
using this approach we achieved better performance than standard SPM approach.

We also adopted sparse coding (SC) representation for descriptors set based on Yang et
al.’s work [12] on image classification. This extension of SPM model replaced the standard
K-means vector quantization (VQ) with SC representation of descriptors set by relaxing the
restrictive cardinality constraint of VQ. Additionally, unlike the original SPM that performs
spatial pooling by computing histograms, they use max spatial pooling that is more robust to
local spatial translations and more biological plausible. We integrated SC representation in
our approach, as a comparison to traditional SPM, showed better classification accuracy.

The rest of paper is presented as follow: Section 2 introduces related woks used in the
process, Section 3-7 demonstrate the applied techniques, Section 8 presents experiment setup
and the evaluated results by adopting our approach, Section 9 draws conclusions and pro-
poses future work.

2 Related Works

A popular architecture for solving video classification problem is (1)extracting low-level
descriptors e.g. SIFT, at interesting point locations, then (2)combining these local descriptors
into a global representation of video. Our combining strategy based on SPM as an extension
to BoF is similar to [4, 6, 7, 12]. Differently we learn decision values for each SPM sub-
region using non-linear SVM, the decision values are concatenated with different weights to
form a stronger video descriptor. Sub-region learning stages are independent to each other,
the process can be parallelized efficiently.

3 Extracting Low-level Descriptors

The low-level descriptors extraction methods are generally following existing popular meth-
ods. This section would take a brief description of the techniques being used.

3.1 Local Motions Detection

Given video data consisting of a sequence of frames, interest points are detected using 3D
Gabor detector developed by Dollár et al. [2]. The response function has the form:

R = (I ∗g∗hev)
2 +(I ∗g∗hod)

2 (1)
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(a)

(b)

Figure 1: An example from KTH action dataset of original frames (a) and spatial-temporal
interest point detected by Gabor detector (b)

In the function, g(x,y;σ) is the 2D Gaussian smooth kernel for spatial dimensions, hev and
hod are a quadrature pair of 1D Gabor filters applied temporally. They are defined as:

hev (t;τ,ω) = −cos(2πtω)e−t2/τ2
(2)

hod (t;τ,ω) = −sin(2πtω)e−t2/τ2
(3)

Where ω = 4/τ . The interest points are the local maxima of the responsefunction. One
example is presented in Fig. 1. The parameters are set as σ = 2, τ = 1.37.

3.2 Local Descriptor

In video, a local descriptor is a vector describing a interest point and its’ near cuboid re-
gion. Both the gradient descriptor and the optical flow descriptor are equally effective in
describing the motion information [10]. In this paper we adopted the 3D histograms of ori-
ented gradients descriptor similar to Laptev et al. [5]. The cuboids near interest points is
first smoothed, and gradients are calculated by dividing the cuboid into (nx×ny×nt) grids.
A weighted histogram is finally accumulated based on oriented direction. We set the pa-
rameters as nx = ny = 4, nt = 2. The histograms from different cuboids are concatenated
over these sub-regions. Then Principle Component Analysis is done on the raw descriptor
reducing number of elements to 200.

4 Descriptors Encoding
Here we borrow the notation in [12] for explanation. Let X be a set of descriptors in a
D-dimensional feature space described above, X = [x1, ...,xM]T ∈ RM×D. The encoding
problem can be re-formulated into a matrix factorization problem:

min
U,V ∑

M
‖xm−umV‖2 (4)

sub ject to certain constraints on U and V (5)
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Where U = [u1, ...,uM]T is encoded descriptors set, V is referred as a visual codebook. By
defining different constraints on the problem, we can have BoF encodings or SC encodings
described as follows:

4.1 Bag-of-Features
In Eq.5, we define the constraints as

Card (um) = 1, |um|= 1,um > 0,∀m (6)

Where Card (um) = 1 is a cardinality constraint, meaning that only one element of um is
nonzero, um > 0 means that all the elements of xm are nonnegative, and |um| is the L1-norm
of um, the summation of the absolute value of each element in um. After optimization, the
index of the only nonzero element in um indicates which cluster the vector xm belongs to.
The optimization is now converted into a standard BoF model.

This optimization problem can be solved by first calculating codebook V with K-means
clustering algorithm, and then for each descriptor xm, find the membership indicator um. In
the coding phase, given a descriptor xm, the membership can also be learned with respect to
the pre-calculated codebook V.

4.2 Sparse Coding
If we adding a sparsity (number of nonzero elements) constraint on um and a L2-norm con-
straint on vk, the problem would be converted into SC:

min
U,V ∑

M
‖xm−umV‖2 +λ |um| (7)

sub ject to ‖vk‖6 1,∀k = 1, ...,k (8)

An algorithm proposed by [8] can solve the optimization problem efficiently. In the training
stage a set of training descriptors are used to solve Eq.7 with respect to U and V. For the
coding stage, the SC codes are obtained by optimizing Eq.7 with fixed codebook V. The SC
coding can achieve a lower reconstruction error compared with standard BoF. So we choose
to evaluate SC encoding methods along with BoF.

5 Spatial-Temporal Pooling
Given a encoded descriptor set U, standard BoF combines them with histogram pooling,
while max pooling function shows better performance on SC coding methods according to
[12]. We evaluated both function in our experiments. This section describes these pooling
strategies.

5.1 Histogram Pooling
The histogram pooling function is:

z =
1
M ∑

M
um (9)
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In standard BoF, orderless histogram is formed by accumulating descriptors as the video
descriptor z. In the extension of BoF, SPM constructs histograms on each sub-region of the
video, and then concatenate them as a video descriptor.

5.2 Max Pooling
. The max pooling function is, every element of final descriptor z is:

z j = max
{
|u1, j|, |u2, j|, ..., |uM, j|

}
(10)

The max pooling function can also be applied to SPM. By changing sub-region, the encoded
descriptors set U changed according to the scope.

6 Support Vector Machine
We use C-support vector classification [1] methods to complete action classification task.
Given training feature vectors x ∈ Rn, i = 1, ..., l, a vector y ∈ Rl such that yi ∈ {1,−1}, The
dual form of optimisation problem can be written as:

min
α

1
2

αT Qα− eT α (11)

sub ject to yT α = 0, (12)
0≤ α ≤C, i = 1, ..., l (13)

Where e is the vector of all ones, C > 0 is the upper bound, Q is an l by l positive semidefinite
matrix, Qi j ≡ yiy jK (xi,x j) , and K (xi,x j)≡ φ (xi)

T φ (x j) is the kernel. We uses radial basis
function (RBF) kernel for evaluation:

K (xi,x j) = exp
(
−γ‖xi−x j‖2) ,γ > 0 (14)

Once the SVM model is trained, we label a new video fame sequences denoted by xT de-
scriptor with decision function:

sgn

(
l

∑
i=0

yiαiK (xi,xT )+b

)
(15)

LibSVM [1] is used for model training and testing.

7 Our Approach
We use the 3D Gabor detector for interest points detection. HoG feature descriptors for
feature extraction as described before. We keep location information of every interest points
throughout the process.

With standard BoF approach, We sample descriptors from training sets for computational
efficiency, use K-means algorithm, define centres of clusters as words to create codebook.
The measurement of clustering metric is Euclidean distance. K parameter in K-means is set
to be 1024. Therefore every descriptors from both training and testing sets can be assigned
to a unique integer label in range 1 to 1024.
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Figure 2: Soft combine strategy overview

With SC approach, we sampled descriptors from training sets, learned codebook by opti-
mizing Eq.7 with respect to both U and V. Then in the coding stage we optimize descriptors
codes U in Eq.7 with fixed codebook V.

Thereafter, a spatial-temporal pyramid with uniformly distributed grids is constructed on
each video. As the resolution level increases, the videos are divided into several sub-regions
in both spatial and temporal scale. Then we derive BoF feature vectors for all sub-regions.
The BoF feature from the same level can be concatenated in sequence and then trained with
SVM. Each level would therefore owned an SVM model that is ready for predicting. Ac-
cording to Eq.15, every descriptor would obtain decision values using the pre-trained SVM
models. The decision values can then be concatenated with weight to form a descriptor per
video (shown in Fig.2). That is to say, for a descriptor dpq located at pth level, in qth sub-
region, it can be tested in the trained model Mp (note that this model is trained based on all
descriptors in the training set which are located in level (p) in different video clips). Ignoring
the hard decision, for a two-class action classification, decision value is:

DecisionValue R =
l

∑
i=0

yipαipKp (xip,x)+bp (16)

Instead of concatenating BoF features from each pyramid level directly, we form decision
values as descriptor for each level and concatenate them with different weight as the fi-
nal descriptor. We learn decision values in the early stage because decision values explain
the descriptors set in a more concise way. For sub-regions evaluation, the length of encoded
descriptors is fixed to the size of codebook, thus reduced computational complexity. Further-
more, descriptors for different sub-regions are independent, this would enable parallelized
computing to make the overall process more efficient. For example in Fig.3, the most impor-
tant sub-region is the centred one, high decision values from this sub-region with third level
weight on the values, makes them much possible to be classified in the same class.
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Figure 3: Sample frames from youtube action dataset, both are from videos with different
actor riding horses.

Figure 4: Average accuracies against KTH action classes.

8 Experiments

8.1 on KTH Action Dataset

KTH action dataset [11] is one of the largest video clips dataset for human actions. It includes
599 clips varying in six different classes: boxing, hand clapping, hand waving, jogging,
running and walking. The scene includes indoors and outdoors with different figures. In
order to avoid large memory consumptions, all pixel data are transformed into 8-bit greyscale
values in the actual testing. In our experiments we simply choose 299 clips as training
samples and the others as a testing set. A 3× 3× 3 spatial-temporal pyramid is build on

every video, weight are assigned as [
1
4
,

1
4
,

1
2
]. Non-linear SVM training process is conducted

using LibSVM, 5-fold cross validation is also done on training set.

We designed three sets of experiments on KTH set: (1) Combining BoF coding with
our proposed method, (2) Combining SC coding with our proposed method, (3) standard
SPM. Fig.4 shows the average accuracies for each class and average overall performance.
Our proposed methods perform better than the standard SPM. The best result is achieved by
combining SPM coding with our method: 94.5% overall accuracy.
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Figure 5: Average accuracies against Youtube action classes

8.2 on Youtube Action Dataset

We also evaluated our methods on the more challenging dataset, the YouTube Action Dataset.
The dataset introduced by [9] contains 11 different categories: basketball shooting, bik-
ing/cycling, diving, golf swinging, trampoline jumping, volleyball spiking, and walking with
a dog. There are about 100 clips for every action group. The dataset is very challenging due
to large variations in camera motion, object appearance and pose, object scale, viewpoint,
cluttered background, illumination conditions, etc. We performed our experiments on total
1587 video clips. As some of the videos involve very fast motions, The parameters of Gabor
detector are set as σ = 3, τ = 2. We first converted all video frames to grey scale to avoid
extra memory consumption, and also limited number of raw descriptors to 400 per video.

Similar to the KTH setup, we evaluated 3×3×3 spatial-temporal pyramid on each video,

with weight vector [
1
4
,

1
4
,

1
2
], with three different combining strategies: (1) BoF coding with

our proposed method, (2) SC coding with our proposed method, (3) standard SPM. Fig.5
shows the average accuracies for each class and average overall performance. Again, our
proposed methods perform better than the standard SPM. The best result is achieved by
combining SC coding with our proposed method: 54.2%. Fig.6 shows the confusion matrix
based on SC coding with our method. The results for classifying “walking with dog” has
very low accuracies for all these three approaches, which can be explained by the fact that
the video clips are of low quality, at the same time the motions in that group are relatively
slower than those in the other groups, the cuboids extracted is not large enough to capture
the motions.

9 Conclusions

We proposed a novel approach for combining descriptors extracted from spatial-temporal
pyramid. The approach showed better performance than the standard SPM approach on
KTH action set and Youtube action dataset. At the same time, the proposed approach can
be separated into independent small processes, which is suitable for multicore and computer
cluster processors. The overall performance on Youtube dataset is not satisfactory in com-
pared with 75.2%, the state-of-the-art performance reported in [3], mainly because the size
of cuboids in descriptors extraction stage is fixed, it failed to pick up motions with varies
speed. That is: with too large cuboids in both spatial and temporal scale, much motion
caused by noises are captured, with smaller cuboids might cause important motions rejected.
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Figure 6: Confusion matrix for youtube actions based on SC coding with proposed method.

In the future work, we would like to focus on optimizing the descriptor extraction process to
improve the performance on challenging datasets.
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A precise localisation of a set of facial points can contribute to a large degree to many
facial analysis problems. Traditionally, this challenging problem has been tackled through
an exhaustive search approach. A set of classifiers account for distinguishing between the
local texture around the facial points and its surrounding area. Then, the classifiers are eval-
uated over regions of interest to obtain the detection. It is also common to use a shape
model to code the spatial relations between the different points[1]. The potential presence
of multiple positives per point and the high computational complexity of exhaustive search
are natural limitations to this methodology. As an alternative, several works have proposed
an estimation-based approach. In these works the facial points are located iteratively. At
each round, an inference of the point location is obtained directly from local image textures,
and a shape restriction/correction can be applied over the estimation output [2]. This ap-
proach is potentially very fast and yields only one estimate. As a counterpart, erroneous
estimates can greatly affect the iterative process, it is possible to converge to local minima
or to have loops in the estimates, and an accurate first estimate is needed. In [3] we propose
an iterative, estimation-based exploration, where the tested locations are sampled stochas-
tically over a region of interest dynamically defined by the estimates obtained up to date.
The obtained algorithm can detect reliably facial points with low computational complexity.
We complement these search methodologies with a probabilistic shape model. We code the
spatial relations using a Markov Network. With this model, we are capable of identifying
anthropomorphically unfeasible estimates. For these cases, a correction based on the feasible
estimates can be computed.

Brais Martinez received a Ph.D. in Computer Science from the Universitat Autonoma
de Barcelona in 2010. He is currently a Research Associate at the Intelligent Behaviour
Understanding Group led by Maja Pantic at the Imperial College of London.

References
[1] B. Martinez, X. Binefa, M. Pantic. Facial Component Detection in Thermal Imagery. In

IEEE Int’l Conf. Computer Vision and Pattern Recognition - Workshops, 2010.

[2] M.F. Valstar, B. Martinez, X. Binefa, M. Pantic. Facial Point Detection using Boosted
Regression and Graph Models. In IEEE Int’l Conf. Computer Vision and Pattern Recog-
nition, 2010.

[3] B. Martinez, M.F. Valstar, X. Binefa, M. Pantic. Local Evidence Aggregation for Regres-
sion Based Facial Point Detection. Submitted to IEEE Transactions on Pattern Analysis
and Machine Intelligence.

c⃝ 2011. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

Proc. of the 3rd British Machine Vision UK Student Workshop (BMVC’11 WS, Dundee, Scotland, 2nd September, 2011)

81



SNELL, ET AL: SEGMENTATION AND SHAPE CLASSIFICATION OF NUCLEI 1

Segmentation and shape classification of
nuclei in DAPI images
Violet Snell
V.Snell@surrey.ac.uk

William Christmas
W.Christmas@surrey.ac.uk

Josef Kittler
J.Kittler@surrey.ac.uk

Centre for Vision, Signal Processing
and Speech
University of Surrey
Guildford GU2 7XH, UK

Abstract
This paper addresses issues of analysis of DAPI-stained microscopy images of cell

samples, particularly classification of objects as single nuclei, nuclei clusters or non-
nuclear material. First, segmentation is significantly improved compared to Otsu’s method
[5] by choosing a more appropriate threshold, using a cost-function that explicitly relates
to the quality of resulting boundary, rather than image histogram. This method applies
ideas from active contour models to threshold-based segmentation, combining the local
image sensitivity of the former with the simplicity and lower computational complexity
of the latter.

Secondly, we evaluate some novel measurements that are useful in classification of
resulting shapes. Particularly, analysis of central distance profiles provides a method for
improved detection of notches in nuclei clusters. Error rates are reduced to less than half
compared to those of the base system, which used Fourier shape descriptors alone.

1 Introduction
We consider improving the automated processing of DAPI-stained cervical smear images, for
an existing diagnostic screening application. DAPI is a fluorescent stain which binds strongly
to DNA, allowing visualisation of the cell nucleus. For diagnosis of potential chromosomal
abnormalities, the DAPI images are combined with FISH1 markers in identified areas of
interest.

Objects identified as a single nucleus would be expected to have a single set of chromo-
somes, and larger numbers of FISH signals would indicate potential abnormality, requiring
further investigation. Slides also include clusters of partially overlapping nuclei, which are
further processed by more complex segmentation algorithms to determine a possible split be-
tween them, and assign the corresponding FISH signals. As the incidence of single nuclei in
each slide is around twice that of clusters, the early separation of classes avoids a significant
computational load in additional segmentation.

The process starts with identification of regions of interest and segmentation of the nu-
clear objects, improvements to which are described in section 2. Classification into single,

c© 2011. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

1 Fluorescence in situ hybridization (FISH) is a technique for locating specific DNA sequences on chromosomes
using fluorescent chemical markers.
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(a) Single (b) Double cluster (c) Triple cluster (d) Debris

Figure 1: Examples of each object type

cluster or debris objects is a supervised problem, with relevant region cut-outs of over 14,000
DAPI images provided with manually assigned category labels. We find a set of feature mea-
surements that improves this classification, as described in Section 3. Some examples of each
object type are shown in Fig. 1.

2 Threshold selection

2.1 Background

In the current implementation, object boundaries are obtained by thresholding the source
images, with a separate threshold for each object calculated using Otsu’s method [5], which
is very widely used for segmentation tasks. On examination of the resulting masks, we note
that there is a significant incidence of poor segmentation within the data set. The outlines
are frequently wiggly, and sometimes quite far from the edge of the object (some examples
are shown in Fig. 3). As the decision on object class is largely based on the shape of the
segmented outline, it is important to improve these so that they match the actual boundary as
closely as possible.

In most of the problematic cases the cause is a threshold that is set too high, sometimes
by as much as 20 to 30 8-bit levels. We find an explanation for this in [4], which demon-
strates that the method is inherently biased towards the class with the higher variance. In our
image set the foreground nuclear objects exhibit significantly stronger texture, and therefore
variance, than the background which is mostly black and plain. This also explains why the
problem is particularly acute for clusters, which may contain constituent nuclei of quite dif-
ferent brightness levels, and overlapping zones which are brighter than either, increasing the
variance.

Fortunately the problem can definitely be solved by choosing a different threshold. Very
good shapes can be obtained on cell and nucleus images using thresholding methods, so
we do not have to resort to more complex and computationally intensive methods of seg-
mentation [6]. Threshold selection methods based on histogram properties prove unsuitable
for this data set, as the histograms are noisy and very variable. Simple clustering methods
also fail to improve on the base-line. Both of these approaches make certain assumptions
about the underlying distributions of pixel values, which do not hold for our type of images.
Fig. 2 shows an example histogram, which illustrates the difficulty of selecting the correct
threshold based on the grey-level distribution.
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(a) Image (b) Histogram

Figure 2: Example image and its histogram. The optimal manually selected threshold is
indicated by the triangle.

2.2 Method
To automatically find the best threshold we consider what qualities would be sought in a
boundary by a human operator faced with the same task: a reasonable match with the visual
edge of the object, and a priori knowledge of its generally elliptical shape. We therefore
use two measurements to assess each candidate threshold: the average gradient across the
boundary, to assess the matching of edge position, and the shape ratio of area to the square
of the perimeter, which reflects smoothness of the outline.

The shape ratio is defined as

S(t) = A(t)/l2(t) (1)

where A is area enclosed by contour and l is length of the contour resulting from threshold t.
It penalises thresholds that are too high, as they slice through the textured foreground result-
ing in very wiggly outlines which accumulate a lot of perimeter length for relatively little
area. This ratio is a common morphological measurement in analysis of nuclear images [3],
sometimes referred to as circularity or compactness.

The gradient measurement is normalised by average brightness of the object, to compen-
sate for changes in illumination between images:

G(t) =

∑
p∈C(t)

|I(p+δ )− I(p−δ )|

l(t) · Ī (2)

where δ is a unit vector perpendicular to the contour C(t) at point p, I(p) are image pixel
values and Ī is the average brightness of object pixels. The gradient is clearly highest when
the boundary matches the steepest part of the grey-scale slope around the object.

The two measurements are combined in a weighted sum to produce a single quality
metric:

Topt = argmax
t
{G(t)+wS · S(t)} (3)

with weight wS estimated from the ratio of sample variances of the two parameters across
the image set as

wS =

√
∑i Vart [Gi(t)]
∑i Vart [Si(t)]

(4)

where i is the image index within the data set. As there is no specific reason for either of the
measurements to have more influence on the outcome than the other, this weight balances
the contributions from each measurement to overall cost-function variance.
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(a) Single (b) Double cluster

(c) Triple cluster

Figure 3: Examples of improved threshold selection, showing grey-scale source image, mask
from Otsu’s method, and the improved mask for each one.

Thresholds from the original minimum variance estimate down to 30 grey levels below
it are evaluated. This range is established empirically, and may not be appropriate for other
image sets. We find that an exhaustive search is required, as the effects of noise and texture
produce substantial variation in the quality metric at intermediate levels, precluding the use
of search optimisation techniques.

Lowering the threshold presents an additional challenge, as the object may join up with
other objects or sections of objects which are present nearby within the image cut-out. To
avoid this eventuality the search is terminated early if this condition is detected. The condi-
tion needs to be distinguished from gradual increase in object area or joining up with parts
of the object itself which had been separated by the excessively high original threshold. This
can be done by monitoring the number of pixels added by each lowering of threshold - a large
step increase indicates coalescing with another object, as the previously disjoint contours are
bridged by a pixel of lower intensity.

2.3 Results

We estimate using Eq. (4) that for optimal balance between searching for a rounded shape,
but also matching the object’s edge within the image, weights of around wS = 12 produce
the best overall goodness measure. This retains reasonably sharp notches in clusters, to
help distinguish them from single nuclei, but corrects most of the deformities introduced by
threshold bias, as illustrated in Fig. 3. The process is not particularly sensitive to the precise
values of the weights; for example, a 10% increase in shape weight affects the resulting
threshold in less than 4% of cases.

The improvement in mask shape resulting from this process is consistent and visually
apparent. As there is no such thing as ‘perfect‘ segmentation (unless the source images
are artificially generated), it is difficult to provide an objective ground-truth and measure
the improvement numerically. Any automatic method of assessing the resulting boundary
would likely involve the very measures that are being optimised by the process. However,
as illustrated in Fig. 4, there is a very large proportion of images that are improved by a
moderate refinement of threshold, and a considerable number that require a large adjustment.
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Figure 4: Frequency of threshold changes

2.4 Discussion
In choosing the threshold there is sometimes a conflict between obtaining a good outline
and keeping it separate from other nearby objects. This could be addressed by an adaptive
method, raising the threshold for the part of the boundary that is detected as being close to
another object, while keeping it low elsewhere. However, we do not find this necessary in
this particular application.

The method described here borrows from active contour models [1] the idea of combining
a shape measurement (often referred to as internal energy) with object features in the form
of gradients (external energy). However, by reducing the search space to one dimension, we
no longer require an iterative approximation or differential equations. Both the complexity
of implementation and computational load involved are greatly reduced, while retaining the
flexibility to define an image-based measure and adjust weights in a way that is suited to the
particular application. While the computational cost is higher than basic histogram-derived
methods, it is still very minor in terms of the overall image-analysis process. As a very large
number of nuclei is processed for each patient sample, the cost does need to be kept low.

3 Discriminating Features

3.1 Background
Many different measurements and features have been used for automated analysis of fluo-
rescent nuclear images [3]. In this study we are primarily interested in discriminating single
nuclei from touching or overlapping clusters, as well as rejecting non-nuclear material; this
decision is mostly based on the shape of the object. Our labelled set includes 7376 examples
of single nuclei, 4550 of clusters, and 2178 of debris.

A common approach to shape classification is the use of Fourier Descriptors of the cen-
tral distance profile [7]. Distance from the object centroid to the edge is calculated at points
equally spaced around the perimeter, separated by regular arc-length intervals. The profiles
are then subjected to the Fourier frequency transform, with resulting coefficients used as clas-
sification features. The existing application uses 10 lowest terms of the 64 point transform,
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and this is used as the base-line for later comparisons.

3.2 Method

(a) Single (b) Double cluster

(c) Triple cluster (d) Debris

Figure 5: Typical examples of central distance profiles for different object types, showing
min and max positions (diamonds) and sides of lowest trough (triangles).

We suggest that in this case some valuable information can be derived from direct anal-
ysis of the central distance profiles, rather than their Fourier coefficients. We define the
distance from the object centroid p̄ for points p j ∈C along the contour C as

r( j) = ‖p j− p̄‖L2, j ∈ {1..K} (5)

where K points are spaced at equal arc-lengths around the contour. We use 64 points for com-
patibility with FFT processing and comparable figures to the existing system. The equally-
spaced points are obtained by re-sampling integer pixel positions from the segmentation
contour. Some typical examples of these profiles for the different classes in this study are
shown in Fig. 5.

Characteristically, most single nuclei show a very small amount of variation in their
profiles, when compared to the other object types. Most variation in single nucleus profiles
comes from the elongation of the elliptical shape, which is smooth, whereas clusters tend to
have much sharper notches and angles between the nuclei, which result in much deeper, but
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also sharper, troughs in the profiles. Debris profiles tend to be much noisier and generally
less consistent in their shape.

Based on the observations above, two types of measurement suitable for classification
are derived from the profiles: the first is a ratio between the minimum and the maximum
of the profile, indicating the relative depth of the biggest trough within the profile. This
is equivalent to the Rmin/Rmax ratio that is sometimes used in nucleus analysis [3]. The
second set of measurements assesses the steepness of the sides of the lowest trough, by
taking gradients either side of the minimum. To reduce the effect of noise, these are taken as
differences from the minimum to values several points away from the minimum position; it
has been established experimentally that 5 points (out of the total of 64) is optimal for overall
classification performance on this data set. The two gradients, from left and right, are sorted
into the larger and the smaller, as no significance can be attached to the orientation. Both are
scaled by the DC term of the Fourier transform, representing average radius, to provide size
invariance.

To improve the accuracy, we include a number of other measurements in the feature
vector. Only the 6 lowest Fourier descriptor terms are found to carry useful information
(with higher harmonics not bringing any improvement in classification). Additionally, the
feature vector includes the shape ratio (defined in Section 2), as well as object area and
perimeter on their own; and another morphological measure based on the relative difference
in area between the object and its convex hull.

C =
Ahull−A

A
(6)

This concavity measure is aimed particularly at identifying the debris objects, which fre-
quently have shapes with random protrusions and irregular edges. We also find it beneficial
to include features derived from the image content, such as mean and standard deviation of
pixel values within the object boundary; cross-boundary gradient (also described in Section
2) and a spot filter energy total. The last two values are normalised by the average brightness
to compensate for variations in overall luminosity.

We use Support Vector Machine (SVM) classifiers with a radial basis kernel, provided
by LibSVM wrapper for WEKA [2], with 10-fold cross-validation to obtain stable accuracy
figures.

3.3 Results

The central distance trough measurements provide a very strong contribution to distinguish-
ing single nuclei from other object types. Even when used on their own, without any addi-
tional measurements, accuracy of 96.3% can be achieved on this particular data set.

With a total of 17 features we can obtain accuracy of 98.7% for identification of single
nuclei, or 98.0% for the full 3-class separation (see Table 2 for full confusion matrix). This
compares favourably with the currently used method based on 10 complex pairs of Fourier
descriptors, which was able to identify single nuclei with accuracy of 97.1%, but was not
suitable for separating clusters from debris (overall error rates of around 7.8%). The standard
deviation of the results obtained from multiple cross-validation experiments is 0.25%, and
the results are summarised in Table 1.

The feature set is found to be robust to noise, particularly to the effects of poor seg-
mentation: the accuracy achieved on images segmented with the original Otsu’s threshold is

Proc. of the 3rd British Machine Vision UK Student Workshop (BMVC’11 WS, Dundee, Scotland, 2nd September, 2011)

88



8 SNELL, ET AL: SEGMENTATION AND SHAPE CLASSIFICATION OF NUCLEI

2-class (Single vs others) 3-class (Single, Cluster, Debris)
10 x complex FDs 97.1% 92.2%
Proposed feature set 98.7% 98.0%

Table 1: Accuracy rate comparison

Classified as→ Single Cluster Debris
Actual class ↓
Single 99.0% 0.8% 0.2%
Cluster 2.1% 96.8% 1.1%
Debris 1.5% 2.5% 96.0%

Table 2: Confusion matrix from 10-fold cross-validation using proposed feature set

only 0.2% lower for 2 classes, and 0.3% for 3 classes, despite quite strong degradation of
boundary shape in many cases.

3.4 Discussion

The error rate of new proposed method is significantly lower than that achieved by the use
of Fourier descriptors alone. For an application aimed at filtering out just single nuclei, the
error rate is less than half (1.3% vs 2.9%), a statistically significant difference of over 6
standard deviations. We also develop a selection of features which is able to differentiate
clusters from non-nuclear debris in the same step. Use of statistics and measurements of the
image content (rather than shape alone) definitely contributes towards this ability, as debris
is generally characterised by a more smeary texture than genuine nuclear objects.

The final confusion matrix is reasonably well balanced, with no one combination a domi-
nating source of error. Although the results quoted are for RBF SVM classifiers only, several
other types of classifier were evaluated (k-nearest neighbour, perceptron neural network,
Bayesian estimators and other kernels for SVM), but none could match the performance of
RBF SVM on this data set.

4 Conclusions

We describe two areas of improvement in an application which promises great advances in
accuracy and availability of early detection of cancers and precancerous conditions.

While the segmentation improvements described in Section 2 have a relatively small
impact on classification performance, the general approach is potentially useful in other
segmentation applications. Although the computational cost of assessing each threshold is
relatively high when compared to histogram methods, the connection to spatial layout of the
pixels facilitates a much more meaningful decision in terms of the object of interest. On the
other hand, the restriction of search space to one dimension allows a favourable complexity
comparison to two-dimensional segmentation methods which optimise some measure of a
boundary’s desirability. Moreover, the method is extremely flexible, allowing a choice of
weights and perhaps different shape and edge measures that are more suitable for a particular
type of images.
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It is difficult to assess the precise contribution to accuracy from any one feature, as it is
the combination of all the measurements in the feature vector that determines the classifier’s
overall generalisation ability. Among the features that have been evaluated, direct measure-
ments on the central distance profile are notable for their novelty and efficacy. While Fourier
analysis of these profiles is widely used for general shape matching, the new measures are
more tailored to the specific task of detecting notches between overlapping or touching nuclei
within a cluster. Similar techniques could also be used in other notch detection applications.
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Abstract

A new approach to texture segmentation is presented which uses Local Binary Pat-
tern data to provide evidence from which pixels can be classified into texture classes. The
proposed algorithm, which we contend to be the first use of evidence gathering in the field
of texture classification, uses Generalised Hough Transform style R-tables as unique de-
scriptors for each texture class and an accumulator is used to store votes for each texture
class. Tests on the Brodatz database and Berkeley Segmentation Dataset have shown
that our algorithm provides excellent results; an average of 86.9% was achieved over
50 tests on 27 Brodatz textures compared with 80.3% achieved by segmentation by his-
togram comparison centred on each pixel. In addition, our results provide noticeably
smoother texture boundaries and reduced noise within texture regions. The concept is
also a “higher order” texture descriptor, whereby the arrangement of texture elements
is used for classification as well as the frequency of occurrence that is featured in stan-
dard texture operators. This results in a unique descriptor for each texture class based
on the structure of texture elements within the image, which leads to a homogeneous
segmentation, in boundary and area, of texture by this new technique.

1 Introduction
Texture is an important property of images, representing the structural and statistical distri-
bution of elements throughout the image. Images can contain a single texture, for example
an image of a brick wall, or multiple textures of varying distribution throughout the image
such as a satellite image containing textures representing urban areas, fields, forest and water.
Image segmentation by texture has a wide range of applications, from analysis of medical
images [7] to remote sensing [8]. Additionally there are industrial applications of texture
analysis which include visual inspection and defect detection [11].

Texture descriptors can be divided into two types; structural and statistical. Structural
approaches apply a transform, such as the Fourier transform, to the image and then obtain a
set of measurements which describe the texture [13]. Statistical approaches classify textures
by measuring a property of the image and comparing the rate of occurrence of this to that
obtained from training images. A well-known example of this is the co-occurrence matrix

c© 2011. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.
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(a) (b) (c) 90.2% (d) 85.6%

Figure 1: BSDS Pyramid: a) original image; b) manual segmentation; c) segmentation using
the EGTS algorithm; d) segmentation using histogram comparison.

[5], developed by Haralick et al. in 1973, where the number of pairs of pixels separated by
a particular distance with a specific intensity are counted. The matrix of number of pairs is
used as the texture descriptor for classification. Another popular and more modern operator
is Local Binary Patterns (LBP) which uses the intensity at a point to threshold surrounding
pixels to produce a code representing the texture pattern at that point [16]. A histogram of
the texture codes is used as the texture descriptor. Both operators are well established and
the LBP has continued to receive significant attention over the years with many published
extensions and applications [2, 4].

Texture classification typically relies on using a measure of similarity between a texture
sample and known texture classes to classify the sample. Segmentation is usually performed
either by classification of each pixel separately via a windowing method [10] or by an itera-
tive split and merge algorithm [14]. Both methods are computationally inefficient since they
require the same information to be processed multiple times.

Unlike texture, the field of template matching in computer vision has benefited from the
use of evidence gathering approaches, most notably present in the Hough Transform, which
accumulates votes for each pixel every time evidence indicating the presence of a desired
shape at that point is found [6]. The Hough Transform was extended further to accommodate
many different shapes such as circles and ellipses, and a generalised form of the Hough
Transform was developed to be able to search the image for any arbitrarily shaped object [1].
The advantages of this evidence gathering method include scale and rotation invariance and
resilience to noise and occlusion.

We describe a new approach to texture segmentation which determines texture class
through evidence gathering. The Local Binary Pattern (LBP) operator is used as the mech-
anism to gather evidence and Generalised Hough Transform (GHT) style R-table and accu-
mulators are employed to store this evidence and vote accordingly. This new approach is
the first use of evidence gathering to determine texture and has been demonstrated to give
very good results for texture segmentation, as illustrated by Figure 1, while maintaining
smooth texture boundaries and minimising noise. The proposed algorithm will be referred to
henceforth as the Evidence Gathering Texture Segmentation (EGTS) algorithm. To show the
advantages of this new technique our evaluation compares results from EGTS with a pure
LBP algorithm known as histogram comparison. This demonstrates that using evidence gath-
ering in conjunction with an established texture descriptor can yield improved segmentation
accuracy.

Section 2 summarises the existing work on texture classification and evidence gathering
that is used as the basis for this new method and Section 3 describes the new EGTS algorithm.
Section 4 provides experimental results and Section 5 concludes the paper.
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2 Background

2.1 Local Binary Patterns
Local Binary Patterns are texture descriptors which label individual pixels in an image with
a code corresponding to the local texture pattern surrounding the pixel. First introduced by
Ojala et al. [15], the earliest form of the LBP used the centre pixel of a 3x3 grid, gc, to
threshold each of the eight neighbouring pixels g0 to g7. This produced an eight bit binary
code which represents the texture element present at that point. The LBP was later extended
to give the texture pattern for P points on a circle of radius R. It was observed that certain
fundamental patterns make up the majority of all LBP patterns observed [16]. These were
found to be the patterns which had at most two zero to one transitions (U(LBPP,R) ≤ 2) and
are called uniform LBP patterns. All of the uniform patterns are labelled according to the
number of ‘1’ bits in the code. When P is equal to eight, there will be ten different patterns:
the uniform patterns from ‘0’ to ‘8’ and the pattern ‘9’ which is the agglomeration of all other
patterns. Since the sampling positions for the neighbouring points are arranged in a circle,
the uniform LBP is, by nature, rotation invariant. This is because if the sample image texture
is rotated, the LBP code produced will still have the same number of zero to one transitions
and the same number of ‘1’ bits, resulting in an identical uniform LBP code regardless of the
order of the bits. The rotation invariant uniform LBP code for a point, LBPriu2

P,R , is calculated
by:

LBPriu2
P,R =

{
∑P−1

p=0 s(gp−gc) if U(LBPP,R)≤ 2
P+1 otherwise

(1)

where

U(LBPP,R) = |s(gP−1−gc)− s(g0−gc)|+
P−1

∑
p=1

∣∣s(gp−gc)− s(gp−1−gc)
∣∣ (2)

and

s(x) =
{

1 if x≥ 0
0 otherwise (3)

Textures can be classified using the LBP by obtaining a histogram of the uniform patterns
and using a dissimilarity metric to compare this to histograms obtained from known texture
classes. Segmentation can be performed by performing classification on a pixel by pixel
basis by obtaining the histogram of a region centred on the pixel.

2.2 Generalised Hough Transform
The Generalised Hough Transform [1] uses an evidence gathering approach to determine the
location of previously defined arbitrary shapes within an image. An arbitrary shape can be
described by the following set of parameters:

a = {y,s,θ} (4)

where y = (xr,yr) is the reference origin for the shape, s is the scale of the shape and θ is
the orientation of the shape. For each edge point x on the shape the gradient is calculated
and the vector r between x and y is stored in a table called the R-table. The R-table contains
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a series of bins, each representing a range of gradients. The r vector for each edge point is
stored in the bin that matches the calculated gradient, resulting in the R-table containing a
complete description of the shape. The algorithm for using the R-table to find shapes with in
an image is described by Ballard [1] as:

“For each edge pixel x in the image, increment all the corresponding points x + r in the
accumulator array A where r is a table entry indexed by θ , i.e., r(θ ). Maxima in A correspond
to possible instances of the shape S.”

3 Evidence Gathering Texture Segmentation
A new evidence gathering approach to texture segmentation is proposed which uses the prin-
ciples of template matching present in the Generalised Hough Transform (GHT) and mod-
ifies it to match texture instead of shape. The technique exploits a property of the Local
Binary Pattern (LBP) texture descriptor which is that if there is structure in the image space,
there must be structure in the LBP space. Mäenpää and Pietikäinen observed in [9] that each
LBP code limits the set of possible codes adjacent to it. This implies that the arrangement of
LBP codes within a texture element is not random and that taking a histogram of the codes
reduces the available information further to that originally lost in the LBP process. It is pos-
sible for several textures to have the same histogram, rendering such methods incapable of
distinguishing between them. By storing the LBP code along with its offset to the centre
of the texture region for each pixel, this structural information is not lost and a unique de-
scriptor is produced which can be used in the classification and segmentation of images. The
descriptor is unique because it can be used to regenerate the array of LBP codes that repre-
sent the texture sample, unlike a histogram of LBP codes which cannot. The new algorithm
is thought to be the first use of evidence gathering in texture segmentation and achieves high
efficiency by transferring the principles of low computational complexity present in the GHT
method to the field of texture analysis.

3.1 Method
As with the GHT, before sample images can be analysed, an R-table must be generated for
each known texture class. This describes the structure and composition of a section of the
texture and is used to classify the texture class of the sample images. Sub-images, or cells,
are taken from the training images and the LBP code is calculated for each pixel within the
cell. The R-table contains a number of bins equal to the number of different LBP codes that
exist for the version of the LBP that is being used. For LBP P values of eight, the number of
bins will be ten; one for each of the nine uniform LBP codes and a miscellaneous bin for all
other codes which are not classified as one of the uniform patterns. For each pixel in the cell
an entry is submitted to the bin corresponding to the LBP code for that pixel. The entry is a
two dimensional vector r=(xr,yr) representing the translation from the pixel to the reference
point of the cell. This reference point is usually chosen to be the centre. In Figure 2, the top
left pixel (shown in red) in the cell has an LBP code of ‘1’ and so an entry is made in the ‘1’
bin with the vector (2,2) which maps the top left pixel to the centre. The size and number
of cells taken from the training images are not fixed and these parameters can be tailored for
different applications. The size of the cell should be large enough to contain at least one full
example of the repeating pattern in the texture. Having multiple cells for each texture class
will provide more evidence for classification during the segmentation process.
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(b) R-table

Figure 2: Example LBP values for a 5x5 pixel cell and corresponding R-table. The reference
point for the cell is shaded in blue.

The following equation is used to calculate the R-table entry for each pixel x = (x,y) in a
cell of centre c = (xc,yc):

r = c−x (5)

where the R-table index is the LBP code calculated by Equation 1 at the point x = (x,y).
As with the GHT, evidence is stored in an array called the accumulator, and a separate

accumulator is maintained for each of the texture classes that are being searched for. In the
segmentation of sample images, the LBP code for each pixel in the entire image is calculated.
The entries in the R-tables represent the possible locations of the current pixel relative to the
reference point of the cell. For the example in Figure 2, if a pixel in the sample image had
an LBP code of ‘6’, it could correspond equally to any of the three positions within the cell
also with that LBP code. For each in turn, votes are made for the area that would cover the
entire cell positioned on that pixel. Rephrasing Ballard, the algorithm becomes: For each
pixel x in the image, increment all the corresponding points in a cell centred on the point x
+ r in the accumulator array A where r is a table entry indexed by the LBP code at point x.
Maxima in A correspond to possible instances of the texture T.

Voting is done in blocks rather than for individual pixels because texture covers an area
and a single pixel on its own does not contain texture. The area covered by each block vote
is equal to the area of the cell from which the evidence was gathered. The three block votes
for an LBP code of ‘6’ using the R-table in Figure 2(b) are shown in Figure 3. The algorithm
is effectively searching the sample image for the texture structure observed in the training
cell. In Figure 3, it can be seen that four of the pixels in the image were within all three
possible cells for that R-table and hence these pixels have a higher probability of belonging
to that texture class. The equations for calculating the coordinates of the four corners of the
rectangle covering the voting block for each R-table entry, where the reference point is the
centre of the cell, are as follows:

Topleft = x+ r+(−cw

2
,−ch

2
) (6)

Topright = x+ r+(
cw

2
,−ch

2
) (7)

Bottomleft = x+ r+(−cw

2
,

ch

2
) (8)
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Figure 3: Accumulator showing block votes for three R-table entries, bordered by red, green
and blue rectangles.

Bottomright = x+ r+(
cw

2
,

ch

2
) (9)

where cw and ch are the cell width and cell height respectively.
An accumulator for each texture class maintains the number of votes for each pixel for

that texture. If there is more than one cell for a texture class, the votes of the subsequent
cells are added to the accumulator for the first cell. When the voting process is finished, the
higher the number of votes for each pixel, the higher the probability of the pixel belonging
to that texture class. It is important to note that analysis of a single pixel yields evidence for
many other pixels. This works because if there is structure in the texture, the LBP code at a
point is related to those around it. Using a higher number of cells per texture class increases
the amount of evidence used to classify pixels and leads to a higher accuracy. Segmentation
is performed by filling an accumulator for each texture class and assigning each pixel to the
texture class with the highest number of votes at that point.

3.2 Extensions
3.2.1 Multi-scale Support

Multi-scale versions of the LBP operator can be obtained from the individual histograms
of the LBP at different scales by extending the measure of dissimilarity to compare over
multiple histograms. The multi-scale LBP has been demonstrated to give better results than
the single scale version [16]. The EGTS algorithm can be similarly extended to support
multiple scales by calculating the votes for each pixel at each scale and then adding them
together. In Figure 4(b) it can be seen that not all textures are identified correctly using an
LBP radius of 1, however when these results are combined with those obtained from an LBP
radius of 2, as seen in Figure 4(c), a vastly improved segmentation is obtained.

3.2.2 Matched Voting

An issue with the original form of the EGTS algorithm is overvoting. Since most modern
LBP variants only have ten different codes many votes are made for the wrong texture since
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(a) (b) 59.3% (c) 95.5%

Figure 4: Multiscale: a) original image; b) Segmentation results using LBP radius of 1 and
nine cells of 32x32 pixels c) Segmentation results using LBP radius of 1 and 2 and nine cells
of 32x32 pixels.

(a) (b) 93.8% (c) 95.5%

Figure 5: Matched Voting: a) original image; b) Results using radius of 1 and 2 and nine
cells of size 32x32 pixels without using matched voting; c) Results under the same conditions
using the matched voting extension.

there will always be an element of overlap in the code occurrence. The LBP methodology
still works; there will always be more votes for a perfect sample than for a different texture,
however the presence of noise or a slightly distorted texture sample can reduce the contrast
of votes between texture classes. A solution to this problem is the matched voting extension.
In the standard version of the algorithm the LBP code of the pixel being classified is matched
to those of the training cells. However if we revisit the theory of structure present in the LBP
space it is apparent that if there is also a match between the LBP codes of the neighbouring
pixels in the sample image and the neighbouring pixels in the training cell there is a higher
chance of the pixel belonging to that texture class. The matched voting extension awards one
extra block vote per correctly matched neighbouring pixel. Tests have shown that allowing
the neighbouring LBP codes to match any of the neighbouring codes in the R-table gives
the best contrast increase while maintaining the rotation invariant properties and number of
votes for correct textures. This means that in the example in Figure 3, the three entries in
the R-table will not be treated equally and will be assigned votes dependant on how closely
the structure matches. Each R-table entry is now required to contain the LBP codes for the
neighbouring pixels as well as the vector from the pixel to the centre of the cell. Figure
5 shows the typical performance increase when matched voting is used instead of standard
voting.

3.2.3 Normalisation

It can be observed that different textures have different voting strengths. This means that
some textures could give a larger number of votes for an incorrect texture than another texture
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Figure 6: Segmentation accuracy of mosaics from the Brodatz subset using both the new
evidence gathering algorithm and the histogram comparison algorithm. The solid blue line
represents the line of equality and the dashed green line is the trend line.

could give for a correct match. This leads to cases where votes from one texture overpower
those from another, distorting the segmentation results. A solution is to normalise the voting,
whereby the votes from each texture are weighted according to their strength factor. One
way of calculating the strength factor is to add up the total number of votes for the texture
over the entire image and divide by the number of pixels. When all votes for a texture are
divided by its strength factor the stronger textures will have their influence over the regions
of other textures weakened, reducing the “overspill” effect. The equation for performing
normalisation on an accumulator A of size w by h is:

Anorm (x,y) =
A(x,y)∗w∗h

∑w
a=0 ∑h

b=0 A(a,b)
(10)

If normalisation is required where one texture is weaker than the others, its use can
restore the texture boundaries to their correct locations. Better results can sometimes be
obtained from manual assignment of the strength factors, leading us to believe that a machine
learning approach is the best way of obtaining the optimum strength factor during the training
stage.

4 Results

4.1 Texture Mosaics
A subset of 27 textures from the Brodatz album [3] was used to generate 50 mosaics contain-
ing four randomly selected textures. This subset is included in the supplementary material.
For each texture in the subset, the bottom right quarter was used to generate the mosaics, and
the top left quarter was used to provide training data for segmentation. Segmentation was
performed using the EGTS algorithm, employing LBP radii of both 1 and 2 for multi-scale
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(a) (b) (c) 76.7% (d) 67.8%

Figure 7: BSDS Mountain: a) original image; b) manual segmentation; c) segmentation
using the EGTS algorithm; d) segmentation using the HC algorithm.

support and segmenting using 9 cells of 32x32 pixels each. The matched voting and auto-
matic normalisation features were also enabled. The standard method of image segmentation
using a texture classification algorithm classifies each pixel individually by taking a window
centred on it and performing comparison against the training data [17]. For comparison, we
have used the LBP segmentation from [10] which uses this method to segment each of the 50
texture mosaics. For simplicity, this algorithm will be referred to as Histogram Comparison
(HC). Results from the 50 tests are shown in the graph in Figure 6, where the preponderance
of results exceeding the line of equality shows the superiority of the new approach. Segmen-
tation accuracy was calculated by comparing the results pixel-by-pixel against the ground
truth. Our EGTS algorithm achieved an average segmentation accuracy of 86.9% and stan-
dard deviation of 8.12 over the fifty tests compared with an average of 80.3% and standard
deviation of 10.36 achieved by HC.

4.2 Real Images
Results from two real images from the Berkeley Segmentation Dataset [12] have been in-
cluded. The first is an Egyptian pyramid shown in Figure 1. The results obtained from our
EGTS algorithm and the standard HC algorithm are shown in Figures 1(c) and 1(d) respec-
tively. A manual segmentation of the image is included in Figure 1(b) and the segmentations
are compared to this ground truth to obtain a numerical indicator of their quality which is
shown in the captions. Both algorithms provide a good segmentation of the image, however
it is apparent that that the EGTS algorithm provides a much smoother boundary between
the textures along with a higher segmentation accuracy. The second image is of a mountain
scene and results are shown in Figure 7. Our algorithm provides a significantly better result
than the HC algorithm and again features smoother boundaries between textures and lower
noise within texture segments.

5 Conclusions
In this paper, we have presented a new method for image texture segmentation which we
contend to be the first use of an evidence gathering approach in the field of texture analy-
sis. In contrast to conventional methods which compare measurements from a sample of an
image to training data to classify a single pixel, our approach compiles information gath-
ered from each pixel into evidence to support the classification of nearby pixels into each
known texture class. Each pixel is then classified into the class for which it has the most
evidence. We have performed a statistical test using a subset of the Brodatz texture database
and our EGTS algorithm gives a higher average performance and lower standard deviation
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than the HC algorithm under the same conditions. The lower standard deviation implies that
in addition to performing better on average, our algorithm is also more robust. Two tests
on real images from the Berkeley Segmentation Dataset show significantly higher segmen-
tation accuracies are obtained from the EGTS algorithm. Our results also provide noticeably
smoother texture boundaries and reduced noise within texture regions. The proposed EGTS
algorithm is an implementation of a higher order texture descriptor; classifying texture based
on the structure of the individual elements which make up the texture. Existing “low order”
descriptors use the rate of occurrence of the texture elements to classify the textures, pro-
viding a descriptor which is not necessarily unique to a single texture class. By contrast,
our EGTS algorithm generates a unique R-table for each texture which not only supplies
information on the occurrence of texture elements, but also their structure. Further work will
focus on parameter optimisation and developing a colour version of the algorithm.
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Abstract 

In this paper, we propose a new method for the recovery of non-rigid structures 

from two dimensional (2D) image sequences captured by an orthographic camera.  

We first describe a general idea of the Structure from Motion (SfM) and the basic 

reconstruction algorithms for both rigid and non-rigid objects using Singular Value 

Decomposition (SVD) and iterative optimization based methods. Current 

methodologies apply a non-linear optimization method to minimize image re-

projection error for non-rigid object reconstruction and recovery of camera 

parameters. Although such methods are proven and widely adopted, their success 

strongly depends on the quality of the initial estimate. This initialisation 

oversensitivity can be reduced by introduction of shape constraints through 

integration of the prior information in the cost function. This inspired us to propose a 

new approach to estimate a shape-varying object using prior learned three 

dimensional (3D) deformation shape model. Results of the proposed method are 

shown on synthetic and real data of articulated face.  

1 Introduction 

Simultaneous shape reconstruction of 3D deformable objects observed in a video 

sequence, and estimation of the corresponding camera motion trajectories, using an 

uncalibrated camera system, is one of the fundamental problems in the computer vision – 

known as Structure from Motion (SfM). This technique has a wide range of applications 

including robot navigation, augmented reality and biomedical engineering. One common 

approach is based on feature point reconstruction [2, 4, 5] followed by curve based method 

which tackles occlusions well [1, 13].  

An effective technique for shape recovery of an object is the classical algorithm of 

point based SfM with factorization, as proposed by Tomasi and Kanade [14]. In this, a 

factorization algorithm based on the Singular Value Decomposition (SVD) was used for 

reconstruction of a rigid object under an orthographic projection model. The algorithm 

factorizes the measurement matrix into shape and rotation matrices under a rank constraint. 

The subsequent work has focused on the factorization approach applied to multiple rigid 

objects [3, 7] and articulated rigid objects [15]. The reconstruction of rigid objects has  
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been well-established for some time now, however in real environments many objects of 

interest are subject to deformation over time, therefore the research has expanded into the 

Non-Rigid Structure from Motion (NRSfM) [2, 17, 18].  

Most factorization based SfM techniques begin with the assumption of an affine 

camera model. Thus approximating the real projection as either weak perspective or 

paraperspective, this is only valid in the case when the size of the object is relatively small 

compared to the distance between camera centre and the object. One possible solution for 

reconstruction under perspective projection model is to scale the image measurement 

matrix by using the reconstructed projective depths, then subsequently factorise the scaled 

matrix and impose the metric constraints in order to obtain camera parameters and object 

structure. Perspective reconstruction has been successfully applied where the object model 

can be assumed rigid: Sturm and Triggs [12] described a non-iterative factorization method 

for uncalibrated cameras, extending Tomasi and Kanade’s algorithm [14]. Han and Kanade 

[6] proposed an alternative method using bilinear projective factorization algorithm; this 

iteratively improves the depth information, eliminating need for fundamental matrices 

calculation. On the other hand, NRSfM with perspective camera [9, 10, 19] can be seen as 

an extension of the classical reconstruction under orthographic projection.  

The main contribution of this paper is a novel approach for reconstruction of 3D 

deformable structures, such as articulated face, from 2D video sequences taken by an 

orthographic camera. We proposed to add specific constraints within the state-of-art batch-

processing scheme previously proposed by Del Bue [4].  

The advantage of this approach is that the proposed constraints reduce a likelihood of a 

non-linear optimization procedure converging to a local minimum.  Furthermore, the final 

results are not strongly dependent on the initial estimate used in the optimization process, 

ensuring the system does not require complex initialisation. 

2 Related Work 

Structure and motion recovery from image sequences is one of the fundamental problems 

in computer vision. To extend rigid SfM to the case of recovering 3D deformable objects, 

Bregler et al. [2] first described a low rank shape model to represent varying shapes. They 

factorize the 2D data matrix, using SVD, into object configuration weights, a camera 

motion matrix and 3D basis shapes used to represent the reconstructed object structure. 

Following this idea, factorization for articulated NRSfM has been proposed [11], but the 

accuracy of these methods strongly depends on the initial affine decomposition. Small 

inaccuracies in the affine values greatly affect the subsequent estimation process. To 

eliminate the ambiguity, Xiao et al. [18] proposed a closed-form solution to focus on 

deformable structure from a sequence of images taken with an uncalibrated camera. They 

employ the traditional orthonormality constraints, but also introduce basis constraints to 

further determine shape basis, however this method does not cope well with the noisy data. 

To overcome this, the iterative optimization methods [17], based on bundle adjustment 

[16], were subsequently introduced.  

One of the fundamental issues when solving NRSfM problems is that they have an 

inherent high number of degrees of freedom (dof) which together with motion degeneracy 

(very limited camera motion during data acquisition) may result in worthless 

reconstructions. Del Bue demonstrated an alternative approach of bundle adjustment which 

introduces object shape prior information [4]. This approach can improve performance for 

both rigid and non-rigid SfM, obtaining reliable 3D reconstructions when an appropriate 

initial guess is provided. But in practice, when only constrained by minimization of the 2D 
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re-projection error and a single basic shape, the optimization of large number of variables 

without a high quality initial guess, often results in convergence to a local minimum.  

The remainder of this paper is organized as follows: Section 3 gives a short review of 

existing non-rigid factorization methodologies, including a mathematical representation of 

deformable object using a linear combination of a set of basic shapes and an adjustable set 

of configuration weights representing the shapes in each frame. This section also provides 

description of the reconstruction problem. Section 4 introduces the proposed shape model 

including estimate of the weight probability density function. Then the non-linear 

optimization is described in Section 5, and Section 6 presents results on synthetic and 

motion capture based data respectively. 

3 Problem Statement 

Given a point in world coordinate system, denoted as sn = [xn, yn, zn]
T
 and transformed into 

m
th

 image coordinate system through rotation Rm and translation tm, its orthographic 

projection xmn onto m
th

 image, is given by: 

 
T1 2 3

4 5 6

[ ] 1
1

m m m xmmn n

mn m m n n n

m m m ymmn

r r r tu
x y z

r r r tv

    
        

    

s
x R t             (1) 

xmn represents the n
th

 3D point sn projected onto m
th

 image; the orthographic camera 

matrix    only encodes the first two rows of rotation matrix with rotation constraint 

    
   . It can be shown that when xmn are given with respect to the origin at the 

centre of gravity calculated for all projected points in the m
th

 frame, tm = 0. 

Consider a set of monocular 2D video sequences, tracking P feature points in F video 

frames, the 2F×P observation matrix can be expressed as: 

 

 
11 1 1

1

1

P

mn P

F FP F

   
   

  
   
      

x x M

W x s s MS

x x M
 

(2) 

Where M is a stack of motion (rotation) matrices representing camera orientation for each 

frame and S represents all 3D feature points on reconstructed objects concatenated into a 

single matrix. 

3.1 Rigid structure reconstruction  

To reconstruct a rigid object or a static scene, factorization is a long-standing and well-

known algorithm [14]. Kanatani and Sugaya provided comprehensive descriptions and 

complete derivation of this technique [8]. Given its simplicity this is widely exploited in 

many applications and also frequently used as first step in optimization procedure to 

reconstruct time-varying shape structure.  

The key idea is to factorize observation matrix W into two factors M and S. 

Decomposition of W with a straightforward SVD based factorization leads to the affine 

approximation M̂  and Ŝ of the real camera motion and shape represented by M and S 

respectively.  
1

2 3 3 3 3 2 3 3
ˆ ˆˆ ˆ( ) ( )( )

       W U Σ V M S MH H S MSF P F PSVD                       (3) 

In order to recover correct rotation and shape a unique linear transformation H can be 

found enforcing the orthonormality of the rotation in   . 
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3.2 Non-rigid structure reconstruction 

Compared with the rigid model, a non-rigid object contains more degrees of freedom and 

is much more complicated to recover since the shape of the object varies over time. 

Assuming that all the points detected in the image are represented with respect to their 

centre of gravity, the dynamic structure under orthographic projection can be represented 

as: 

11 1 1 1

1

P

mn

F FP F F

      
     

 
     
           

x x R 0 S

x RS

x x 0 R S

                          (4) 

Describing the deformation using F independent shapes Sm = [sm1   smP], with smn 

representing coordinates of the nth 3D feature point in frame m, may entail more unknown 

variables than constraints. However, it is clear that motion is not random, feature points are 

highly correlated in time and space. Therefore, an object is unlikely to deform completely 

arbitrarily over time. Using basic shapes and basic trajectories are two major approaches to 

determine structure which lies in a lower dimensional subspace.  

Using a shape model to represent the non-rigid structure is one way of reducing 

dimensionality of the problem [4, 5]. A linear combination of K basis shapes, Bd, could be 

used to mathematically represent a morphable 3D model represented in each frame. 

1 1 2 2

1

K

m K K d d

d

   


    S B B B B                                    (5) 

Where basic shapes    are unknown but fixed, whilst deformation coefficients    are 

adjustable over time. Figure 1 illustrates an example of deformable model. As show 

“symbolically” in the figure, second basis shape provides a greater contribution than any 

other basic shape.  

The whole shape matrix S can be rearranged as: 

1 11 1 1

1

K

mn

F F FK K

 



 

        
     

 
     
             

S B

S

S B

                                      (6) 

To deal with the case of non-rigid shapes under orthographic camera model, a low rank 

shape model has proved a successful representation. The advantage of this approach is that 

it can tackle the problem without any prior information about the object or the scene, or 

any other multiple views and 3D input. The core of this method is to express the 

measurement matrix as a trilinear product of three matrices: pose, basic models and time 

varying coefficients. Such that: 

1 11 1 1 11 1 1 1 1

1 1

K K

mn

F F FK K F F FK F K

   



   

            
         

  
         
                     

R 0 B R R B

W MB

0 R B R R B

   (7) 

Where motion M is a 2F×3K matrix which contains rotations Rm with weighting factors 

mn and basic shapes Bd have size 3K×P, the rank of W must be at most 3K in the absence 

of noise.  

The limitation of this approach is that the motion matrix is non-linear, when an 

inaccurate set of basis shapes have been chosen, it may not be possible to remove the 

affine ambiguity. 
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Figure 1: A graphical representation of the deformable shape model as a weighted 

superposition of several basic shapes (shown shapes do not represent a true appearance of 

the basic Bi). The size of the shape visually encodes the corresponding shape’s weight. 

 

4 Prior information learning 

As mentioned in previous section, the results obtained without using any prior information 

about the shape and/or trajectory are sensitive to the level of noise present in the data and 

the algorithm initialisation. The higher number of degrees of freedom may lead to smaller 

re-projection error, but result in unrealistic reconstruction shapes. Appropriate prior shape 

information can help to improve the results. The key idea in our method is to use a learned 

shape space model. 

4.1 Proposed shape model 

Our method departs somewhat from the linear combination of weighted shape basis model 

presented in preceding section. We propose to use standard Principle Component Analysis 

(PCA) to obtain constraints on the basic shapes. 

Principle Component Analysis is a useful statistical technique for reducing the problem 

dimensionality. In the last two decades, it has been employed in a wide range of 

applications across many areas of computer vision. In this application the idea is to 

represent each of the shapes in the training dataset in a low dimensional shape space that 

reduces the large number of observed variables into a small number of principal 

components. Suppose a training dataset has N shapes and the set of points in i
th

 shape are 

represented by   . The mean shape,   , of all the training dataset is given by:       
 
      

and eigenshapes Ei and eigenvalues i are obtained from the covariance matrix, defined as 

  
 

 
                 

   . Any of the shapes from the training dataset can be then 

approximated by: 

                                   

  

  

 
    

                                      (8) 

K-1 is the number of dimensions after reducing the dimensionality.   describes the 

contribution of i
th

 eigenshape and is calculated using the inner product between Ei and. 

     . 

Inspired by the idea of PCA and following the deformable shape representation described 

in equation (6), our proposed shape model is given by: 

1

0 1 ( 1)

1

m m m K

K

   



 
       
  

B

S B

B

                                         (9) 
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There are K basic shapes, B0 as the first basic shape is similar to mean shape    computed 

from all the faces in the training datasets. Therefore   is a scaling factor for first basic 

shape which controls the overall size of the shape. The rest of the basic shapes, B1 to BK–1 

are forced to be close to the corresponding eigenshapes. The basic shapes are only 

“encourage” to be close to the mean shape and eigenshapes instead of to being exactly the 

same.  

By stacking the shapes 
mS  for each time instant, then projecting them onto the 2D images 

using orthographic projection model, equation (9) can be re-written in compact matrix 

form: 

1 1 0 11 1 1( 1) 1 1

0 1 ( 1) 1

K

F F F F F K F K

  

  



 

    
    

      
        

R B R R B

W

R B R R B

                               (10) 

4.2 Prior 

Given that deformation is not random, thus with prior knowledge it is possible to restrict 

the estimated deformation of the object; if it is known how the weighting coefficients     

are distributed in K–1 dimensional space. If the prior is not applied to constrain the 

weights, it may lead the reconstructed shapes representing not feasible deformations.  

To further constraint the reconstructed shapes, a prior probability on the values of the 

weighting coefficients is added to the model. The Parzen window density estimation in the 

face-eigen space was used for this purpose.  

2
1

1 1
( )

N
i

i

p
N h h




 
  

 


γ α
α                                              (11) 

Where N is the number of shapes used to estimate the probability density function, and  

    is a kernel function. For the isotropic Gaussian kernel function the estimate of the 

density function is given by: 
2

2
1

1 1
( ) exp

22

N
i

i

p
N 

 
  
 
 


γ α

α                                    (12) 

The dimensionality of this function is defined by the number of eigenshapes used in the 

approximation. An example 2-D weights probability distribution is shown in Figure 2. 

5 Non-linear Optimization 

As the information about shapes and weights probability distribution is learned in advance, 

the optimization process comes down to minimizing a cost function built as a 

superposition of four components  

The first component of the cost function measures the re-projection error between the 

feature points detected in the observed images and corresponding projection of 3D points 

in the estimated shapes. The re-projection error is given by: 
,

2

1, 1

F P

re mn mn

m n


 

  w w with 

1

0

K

mn m md dn

d






 w R B                      (13) 
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Assuming that the reconstructed object is viewed by an orthographic camera, rotation 

matrix Rm represents orthographic camera matrix. The second component of the cost 

function enforces orthonomality of all Rm and is expressed as:  

2

1

F
T

rot m m

m




  R R I                                                 (14) 

The prior on the shape basis given in equation 15 is included as the third component of 

the cost function: 
1

2 2

0

1

K

bs d d

d






   B X B E                                          (15) 

Given that the reconstructed object is not part of the training dataset, we are much more 

concerned about recovering the 3D shapes rather than having accurate basic shapes.  

Last but not least, following discussion in Section 4.2, the fourth components of the cost 

function introduces constraints on the weighting coefficients. We restrict the search for 

optimal weights within the high probability region of the learned weights probability 

distribution leading by maximising      .  

The overall proposed cost function combines minimization of the re-projection error with 

efficient constraints for rotation matrices, shape basis, as well as weighting coefficients:  

     1 2 3
, ,

min ( , , ( ))
m d m

re m d m rot m bs d mp       
R B α

R B α R B α              (16) 

Where scalars          are the design parameters controlling importance of each 

constraint in the cost function. A non-linear optimization based on bundle adjustment 

using Levenberg-Marquardt algorithm was applied to minimize this cost function. The 

adopted method is efficient and is able to converge to the correct solution even in cases 

where the initial point is far from the expected minimum. 

Rather than initialize the data using the method described in Section 3.2, the 

initialization is obtained using the generalized SVD (GSVD) [4] followed by orthonormal 

decomposition [5]. An initial shape is given by a rigid shape which is computed from 

measured data and prior shape model. To initialize rotation and weights, orthonormal 

decomposition is applied to decompose the remaining factors in the observation matrix.  

6 Results and Evaluation 

The experiments evaluating the proposed methodology are based on recovery of an 

articulated face model. In the case of face reconstruction, the estimated shape can be 
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Figure 2:  Probability distribution of configurations for first two basic shapes in 2-D.  
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accurately represented using a model with a relatively small number of degrees of 

freedom, therefore allowing for linear deformations. Firstly we introduce the training data 

and show the learned shape model. Then, the accuracy of the proposed method is analysed 

with the use of synthetic data. Finally, the results obtained for real data, captured by a 

dynamic 3D scanner, are shown to further validate the proposed approach. 

6.1 Shape model  

The training datasets are taken from the BU-3DFE
1
 and Hi4D-ADSIP

2
 database. A total 

number of 2400, rigidly co-registered, 3D face images of different people with different 

facial expressions were used for learning the shape model and the distribution of weights. 

Figure 3 shows two examples of the shapes built using the learned mean face and 

eigenfaces.  

                                  (a)                                                                     (b) 

Figure 3: (a) Shape consisting of mean face and first eigenface; (b) Shape consisting of 

mean face and second eigenface. 

6.2 Evaluation on synthetic data 

In the first experiment, we generated a synthetic sequence to simulate a human face, 

allowing deformation. In real case, inaccurate tracking will affect the 2D measurement 

input data, which would lead to a failure of most previously proposed approaches, as those 

are very sensitive to noise. This experiment is designed to test the performance of our 

method in terms of its sensitivity to different levels of Gaussian noise added to the 

measurement data W.  Figure 4 shows the performance of our method with different noise 

levels and a varying number of basic shapes used for the reconstruction. The input data 

was composed of a total of 42 feature points over 60 frames. The number of basic shapes 

used for the reconstruction was set at 3, 5, 7, 10, 15 and 20, and levels of additive noise as 

5% (Noise = 5%    ), 10% and 15%. The error was measured by 
                                

            
%. As expected, increasing the number of basic shapes 

decreases the error efficiently due to greater number of eigenfaces used to constrain the 

reconstructed shapes.  With a noise level 0%, the recovered shape is very similar to the 

true shape with the reconstruction error close to zero. With noise present in the 

measurements, reasonably accurate shapes are still obtainable, showing that the method is 

robust. 

The method introduced by Del Bue [4] uses rigid model as prior shape. This works well 

only in the case when initial estimate is close to the global optimum and measurements are 

relatively accurate. In order to compare our method with Del Bue’s, both algorithms were 

tested using the same 2D input sequence. Results are shown in Figure 6. Although the 

measurement errors are small for both methods for low level of the measurement noise, the 

proposed method performs noticeably better when the noise level increases. 

                                                           
1 BU-3DFE database has been obtained from Binghamton University USA; 
2 Hi4D-ADSIP database is available from the ADSIP Research Centre at the University of Central Lancashire 
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6.3 Motion capture based data 

Ground truth data of an articulated face was captured using Passive 3-D scanner with 3D 

tracking of 34 and 68 feature points. The points were projected onto the images sequences 

with different number of frames (30 and 60 frames respectively) under orthographic 

camera model. The results are listed in Table 1 and 2, evaluated in terms of 3D shape error 

and 2D re-projection error, for cases where differing number of basic shapes are used for 

the reconstruction.  

#Basic shapes  3 5 7 10 15 20 

3D error (%) 34 P 12.56 12.22 10.63 10.28 8.62 7.50 

68 P 16.45 13.31 12.10 10.82 8.60 7.34 

2D re-projection 
error (%) 

34 P 0.39 0.22 0.14 0.11 0.076 0.053 

68 P 0.66 0.26 0.20 0.14 0.064 0.049 

#Basic shapes  3 5 7 10 15 20 

3D error (%) 30 F 12.56 12.22 10.63 10.28 8.62 7.50 

60 F 17.16 13.99 13.98 12.54 10.34 8.21 

2D re-projection 
error (%) 

30 F 0.39 0.22 0.14 0.11 0.076 0.053 

60 F 0.9 0.39 0.27 0.22 0.085 0.059 

Figure 4: Reconstruction error given 
with respect to noise level and 
number of basic shapes employed. 

ground truth        our method         previous  
 
Figure 5: Our method offers improved facial 
reconstruction, evident from the side view. 

Table 1: Error with different number of basic shapes and points (40 frames) 

Table 2: Error with different number of basic shapes and frames (34 points) 
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Figure 6: Reconstruction (left) and measurement (right) error, varying the noise 

level for comparison of the existent and our method. 
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Figure 5 compares the Del Bue’s approach and ours. Although the frontal view appears 

well reconstructed in both cases, the side view demonstrates our method performs better 

for recovering depth information.  

The results shown in figure 6 are for tracking 42 points over 60 frames video 

sequences. We present both front view and side view of a selection of facial 

reconstructions extracted from the sequence. 

                             frame 1                 frame 20              frame 40               frame 60 

                                                       

                            

Figure 6: (a) 4 frames with different facial expression extracted from the 2D input video 

sequence. (b) Front and side view of reconstructed faces.  

7 Conclusion 

We have developed several extensions for recently proposed algorithm for recovering 3D 

deformable object and camera pose from a video sequence. The proposed extensions 

include use of learned shape model and distribution of the weights, in the cost function 

which improves performance of the optimization process. 

The current approach relies on a linear subspace model to represent the deformations of 

the object of interest. However, this approach is only applicable to a relatively simple non-

rigid object, especially when the reconstructed object is based on only a small number of 

basic shapes. Further work is therefore required to constrain shapes to a smooth manifold 

representing learned complex shape variability. This approach will be more accurate and 

well-adapted to large deformation models which cannot be accurately represented by a 

linear subspace.  
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