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Abstract

The estimation of the fundamental matrix from a set of cqoesling points is a
relevant topic in epipolar stereo geometiy]. Due to the high amount of outliers be-
tween the matches, RANSAC-based approachiesd 29] have been used to obtain the
fundamental matrix. In this paper two new contributes aes@nted: a new normal-
ized epipolar error measure which takes into account thpesb&the features used as
matches 17] and a new strategy to compare fundamental matrices. Theopeal error
measure gives good results and it does not depend on the goalge Moreover, the new
evaluation strategy describes a valid tool to compare rdiffeRANSAC-based methods
because it does not rely on the inlier ratio, which could motespond to the best allow-
able fundamental matrix estimated model, but it makes usereference ground truth
fundamental matrix obtained by a set of corresponding p@ivien by the user.

1 Introduction

In epipolar stereo geometry, the fundamental matrix F is themaatical object which em-
beds the relation between corresponding poif. [ The computation of the fundamental
matrix is a crucial task in many computer vision applicasioauch as three-dimensional
reconstruction7]. In order to provide its estimation, a relative small iaitset of corre-
sponding matches is required. This set is typically obthimg comparing image features
extracted by a keypoint detectdrq] according to a similarity measure obtained by a featur:
descriptor L6]. Though a lot of work has been done in this area, outliersasmt a high
portion of the initial matches used to compute the fundaaienéatrix and they can dramat-
ically influence the final result. In order to alleviate trgsue robust estimation algorithms
have to be used, whose RANSAC (RANdom SAmple Consenglis {he most popular.

The fundamental matrix model F is estimated from a randooseh minimal set of
matches, which reduces the change of the model to be cordgadiby outliers, and it is
tested against the whole set of matches according to anyededimor measure. The best
F so far is retained after each iteration, and the computatials after a fixed number of
iterations or until the probability to get a better modelawl The best inlier set is used to
compute the final fundamental matrik{].

Different approaches have been proposed to enhance RAN$A@droving the cost
function [L1, 29] and the sampling strateg,[4, 13, 15, 18, 19, 23, 25], or to deal with
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degenerate configurations, [8] and allow faster model check&4, 20, 22], but also other
similar approaches exisb[24, 31].

In order to compare different RANSAC-based strategies,cthraputational efficiency
and thecorrectness of modelre considered. For the latter measure, the inlier ratiguslly
adopted in the case on non-synthetic dafg 5, 29). However it does not always coincide
with the most appropriate one, though it is the optimizafiorction RANSAC tries to max-
imize, as in the case of scenes which contain a dominant plawben error cost functions
are not directly comparable. On the other side, to checkecomatches by user inspection
can be difficult in the case of huge amount of matches and ibeaubjective, too.

The direct comparison between the correct and estimatethfoantal matrices has been
also proposed, however it does not provide a valid error ared80], while sampling dis-
tances between the true and the estimated correspondipgl@piines can provide good
evaluations30Q].

In this paper, two contributions are presented. A new namedlepipolar error measure
to select inliers to estimate the fundamental matrix is diesed in Sectior2, which takes into
the account the shape of the features and does not introdyderéher relevant computation.
Moreover, it does not depend on the image scale, due to tmeatiaation, and increases the
model estimation.

Lastly, a new method to compare the fundamental matrix isigenl in Sectiond. It
does not rely on the input matches but indirectly employseaa-psovided ground truth fun-
damental matrix, which can be obtained easily by a small rarrobhand-taken matches.
Evaluation results are discussed in Seci@and final conclusions are reported in Section

2 Thenew normalized epipolar error

Given a stereo image pdih, I2) and corresponding points € I3, X2 € |> in homogeneous
coordinates, the fundamental matrix F determines theimelacngxl = 0. Geometrically
the pointx; is constrained to lie on the epipolar lile= xJF, and in similar wayx, on
I, = x]FT. Epipolar lines pass through the epipotes |1, & € I, which are respectively
the right, left null-space of F1[].

The fundamental matrix F can be extracted by 8 or more cocareespondences by us-
ing the eight-point algorithml[0]. More matches are provided, better will be the estimation
F, but the presence of outliers can strongly affectetldt. [Furthermore, it was shown i2[]
that it is possible to obtain from 3 up to 10 feasible fundatakematrix solutions when 7 to
5 corresponding points are used respectively.

In order to estimate the goodness of the model, RANSAC taesaximize the function
& of the number of correspondences for which the egreg less than the threshold value

t[7] L
ife<t

&) { 0 otherwise (1)
while MSAC (M-estimator SAC) 49| saturates the error up to the threshold val@nd a
mixture between a Gaussian distribution for inliers and iéoum distribution for outliers is
used in MLESAC (Maximum Likehood Estimator SAC}9. The Sampson errorl[]] is
usually chosen as error measugrébut also the distanag of a pointx to the corresponding
epipolar linel

d(x,1) =

(X)3

‘Ix

(02+02) (2)
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where (a), is the k-th component of the vectaa, that is the epipolar distana#(x;, ;).
Slightly better results have been reported with the formeareneasureld].

Let #1 € 11, %> € |, be two elliptical feature patches centredxify X, as commonly
extracted by feature detectors7], with minor and major axes respectivetinin, Amax.
i € {1,2}. As done for the feature descriptor computati®f]] the scale is increased by a
factor of three to include the boundary data.

The error measurr in the imagd;, for the feature paift%#1,%-) is defined as

Ki = min (M,l) 3)

Omin

that is, the epipolar distana¥Xx;,l;) between the feature centrg and its epipolar lind;,
computed by using the corresponding point in the other imasgeormalized by the minor
axis of the feature ellips&;.

The errork; achieves the maximal value of 1 roughly when the supposeujezted
feature ellipse would not touch the actual ellipse, as shiovirigurel. Clearly, when acci-
dentally a wrong featur&; lies close to the correct epipolar lihethe errork; is misleading,
as it also happens for both the Sampson error and the epifistanced (x;, ;). To take into
the account the possible error committed by the keypoimadet in the extraction of the fea-
ture %, the minor axisimin, is preferred to the major axisnay in the normalization, i.e. a
more pessimistic assumption is made for the worst case sSoehwever, since the feature
axis ratio is usually related to the intensity variationtod keypoint region in all directions,
which detectors often try to maximiz&,[17], the values obrmay andamiy are usually close.

The proposed errat; does not depend on the image scale and provides a soft thadesh
t on &, thus a possible overfitting on matches derived by a nonm¥@tchoice oft can be
alleviated.

About the complexity of the normalized epipolar errgrwith respect to the standard
epipolar distance(x;, li), only a negligible overhead is added for computing in adeahe
minor axis length for each feature involved in the matchiplgis the time required by a
division and a max operation at runtime.

Figure 1: Examples of different values of the normalizechefar distancesi;. The dark
grey circle represents the reprojected feature suppostetlarror measurg, the light grey
circle is the approximation of the feature ellipg. The epipolar distance(x;, ;) is given
by the dark grey segment joining the centres of the two draled the minor axismin is

shown as the light grey segment.
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3 Proposed evaluation strategy

3.1 Motivations

In order to compare fundamental matrices estimated byrdiftealgorithms on non-synthetic
data, the inlier ratio is commonly adoptetl3[ 25, 29). Although the maximization of
the number of inliers coincides with the formulation of thatimization problem used by
RANSAC-based approaches, i.e. find the best F compatibletiv largest input dataset,
this does not always correspond to the desired real soluTiortiest different algorithms in
the case of the computation of the fundamental matrix, iteaeasily seen that the threshold
t should remain fixed. By increasing the threshold, a largsensus set of points is usually
found which could wrongly lead to include outliers. On theeatside, by choosing a lower
threshold valué correct inliers can be discarded and no sufficient data coaldresent to
get a good estimate F. A reasonable valuewhich should be maintained fixed among the
different algorithms have to be used, but it cannot alwayadepted when the error mea-
sure are not commensurable. This is the case of a compai$aedn the epipolar distance
d(x;,l;) expressed in pixel and the new proposed normalized epipaolark; which ranges
in [0,1].

Furthermore, the theoretical best model obtained by a tastignator algorithm, could
not meet the correct solution even if a prefixed valugisfused. It can happen for instance
in some degenerate cases when a dominant plane is presesyiiet®d in Figure, where
the initial set of matches (see Figut¢e)) contains an high fraction of outliers (red squares).
Although a higher number of putative inliers is found by thedal (see Figure (a-b)),
which is clearly wrong, the true correct fundamental magrigsents less true inliers (see
Figure2 (c-d)).

Moreover, it was shown that a direct numerical comparisdawéen fundamental ma-
trices by the Frobenius norm does not provide a valid errcasuee B0], while sampling
distances between the true and the estimated correspogpiipgiar lines can characterize
the error between the matricex.

3.2 The proposed approach

In order to deal with these issues a new relation betwees bnghe image is defined. Given
two linesr, s R?, let % s be the cone obtained by intersecting the two half-planesngiv
by r ands so that the minimum intersection angle is considered, agshio Figure3 (a),
and the resulting surface is not null in the case of paratiekl as in Figuré& (b). When the
intersection angle isr/2, any of the possible cones can be choose without distimctio

The intersection arela of the image surfaceand®; s, normalized on the whole image
area surface is defined as
A(N%s)

I.(r,s): A(|)

(4)
whereA(-) defines the surface area. Tlheatio can be seen as the minimum amount of work
inside the imagé needed to move a line to the other, with~ 0 when the lines are almost
the same.

Let F, | be the true fundamental matrix and the true epipolar lineesponding to the
pointx; € i, i € {1,2}, given the stereo paits, ), andF, I; as their estimation respectively.
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Figure 2: An example for which the best theoretical modeaotatd by RANSAC (a-b) does
not coincide with the real solution (c-d). In both casespefar lines (blue lines) are shown
as well as inliers (squares). The initial set of matches ¢a}ains correct matches (green,
yellow squares) and wrong matches (red squares). A cort@ciniyellow square) is missed
in the bad model with an inlier ratio of 95%, opposing to thereot solution for which it is
63%.

For a pointx; € l;, the error

91 (xi) = I (T F T Fi) = (1. )

. 5
_ _ ) F ifi=1 (
with i=3-i, F= { FT otherwise

is an indirect measure between the matrices FFand the stereo image pair, which can be
seen as a dense generalization of the measure propos&d.inHor each poink; on the
imagel;, the epipolar line$ andl; are determined on the other imalgedefining a magp;
which is almost continuous on the image, as shown in Figu@nd defines a fingerprint
of the difference between the matrices. Discontinuities ltappen by switching the cone
surface near ar/2 intersection angle, but only for high error models (seeuféd (d-e)).
The error measurg; can be low for an high image portion, because for a finite dpipo
and its estimatioig the corresponding epipolar line pencils share a commorliaey x §

for which I}, = 0 and due to the continuity near this map area low values caarqsee
Figure4 (d-f)). However, the maximurg of ¢
G = maxe;(x;) (6)
Xi€l;

can give a good indication about the precision of the matstimeation F with respect to
the true fundamental matrix F when points from the imhgee projected to image. The
maximum¢ on both images

¢ =max(¢, ¢) (7)
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Figure 3: The coné&; s (grey) in the case the lingsands intersect (a) or are parallel (b),
and its intersection with the imadddark grey).

is finally used as error value. By considering the continaftthe mapg;, in order to speed-
up the computation thg values can be computed only on sampled pointemogeneously
distributed on the imagk, for instance on a grid.

4 Evaluation

4.1 Experimental setup

The new normalized epipolar errar has been compared against the Sampson error and
the epipolar distancd(x;,l;i), applied to RANSAC, MSAC and MLESAC. To distinguish
between them, the ‘no’ prefix is added in the case ofiitrenalized epipolar error. In order

to combine the error of both the images of the stereo pair énctiise of epipolar errors

& € {ki,d(x;,l;)}, three possible choices were considered, i.e. the synuregipolar error
usually adopted in the case of the epipolar distadck [

&+ €&
g= = ®

the max epipolar error
&m = max(&1, &) (9)

gg=1\/E2+ €5 (10)

A set of 10 sequences, made up of three images of a three-giomahscene taken from
different points of view, have been used, for a total of 3@esiemage pairs, four of which
have been extracted from other work$,[28, 32].

The HarrisZ keypoint detecto?]and the sGLOH descriptoL], both proven to be robust
and stable, have been used to get the matches ranked by atmezsghbour selection. The
former is based on the Harris corner detec@njvhile the latter on the SIFT descriptatd].

Different thresholds$ have been used. In the case of the normalized epipolar éneor,
whole range was tested, in particular 9 values from 0.1 tobg.@ step of 0.1 were in-
vestigated. It was found experimentally that a range fromnt0.4.5 pixels covers the best

and the geometric epipolar error
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Figure 4: Two different estimations of the same fundamemtairix. The points on the
imagel; (a,d) correspond to the estimated (solid) and the true @B%pipolar lines on the
other imagd; (b,e). Clearly the model on the top row (a-c) is better, as @dnfirmed by
inspecting the sampled maps(c,f). In the bottom row model (d-f) there is a discontinuity
between the red and the green points, where the minimum amaydle by the epipolar lines
switches. When both the true and the estimated yellow egipioles pass through both the
estimated and the true epipol@gx;) = 0%.

threshold setting for the epipolar distance and the Samgson A step of 0.5 was used in
this latter case to get 9 threshold values too.

In order to compare the methods, tiemap was computed only on sampled points of
the stereo pair images, which have sze n. The points have been sampled on an uniforn
Cartesian grid, where the stridés determined byl = min(m,n) /30.

For each stereo pair the ground truth fundamental matrix aeasputed by using the
normalized eight-point algorithnip] on more than 50 hand-taken correspondences, hom
geneously distributed on the images. A maximum of 5000titama was set for each method
and the final matrix estimation is computed again by the nézed eight-point algorithm
on the best inlier set found by the method.

To take into account the randomness of RANSAC-based algositthe resulting error
values are averaged on 30 runs for each possible choice afitalyg/threshold considered,
for a total ofv = 189 different combinations, and the same random seed isfosexch
iteration among the different algorithm/threshold potisigs. Finally, for each stereo pair
the different methods have been ranked according to thageef their errorg, namedg.

4.2 Result

A global bar plot summarizing the results is reported in Fég The global error of each
method in the corresponding threshold ran@el] for ; and[0,4.5] pixels ford (x;,l;) is
reported. For each stereo pair, the eigdor each method has been normalized by the mea
and the standard deviation computed on the stereo paft ilselause the different errors are
related to the complexity of the images which can vary wiffedént stereo pairs. Next the



8 BELLAVIA, TEGOLO: NORANSAC FOR FUNDAMENTAL MATRIX ESTIMATION

final global error for a method is obtained by averaging théhae errors on all the stereo
pairs, shown in the plot normalized in the ra@gl], higher bars means lower error values.
The error distribution can be retrieved also by looking @&t different horizontal lines,
which correspond to different error data percentiles, a.galue of 20th% means the value
of the sorted data in increasing order at position 2096= 20%x 189=47. More close are
lines, denser is that data error region. Data after the 9@iré6 are not shown to improve the
visualization. According to the error distribution, almhadi methods provide similar results
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Figure 5: Global error for each methods. Higher bars indibatter results (see text).

since almost all error values are accumulated near the 2&thRosition. As it can be seen,
normalized RANSAC and MLESAC, namely noORANSAC and noMLES#&ems better
than their original counterparts, while the opposite halden comparing noMSAC with
MSAC. Moreover, no0MLESAC and MLESAC give the best resultdipived by noORANSAC
and RANSAC.

Furthermore, in the case of the normalized epipolar ereb#st threshold ranges around
[0.3,0.5], while this is different from RANSAC to MLESAC, as it can beesefrom the po-
sition of the peaks in the plot. This is an experimental evidethat the normalized epipolar
distance is more independent from both the method and tliedtimages than its absolute
counterpart, which implies higher stability and robustnefsthe proposed error measure.

As a further note, the geometric errey seems to provide the best results, while the
Sampson error seems slightly less effective, opposing &t whserved ing0].
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5 Conclusions and futureworks

In this paper, a new normalized epipolar error measure isqued to estimate the fundamen-
tal matrix with RANSAC-based approaches. The new distanakesuse of data provided
by the shape of the keypoints used as the point correspoesié&atween the stereo image
pair, with no further relevant computation.

In order to provide a comparison with existent error measangovel evaluation strategy
has been proposed too. It does not rely on the input matchésidirectly employs a user-
provided ground truth fundamental matrix, which can be ioleté easily by a small number
of hand-taken matches. No threshold-related issues asemtehe results are more close to
the required real solution and a meaningful measure is aetuc

According to the new evaluations strategy, the new norredlepipolar distance provides
better results when applied to RANSAC or MLESAC and moredvisrmore independent
both from the applied method and from the input images, whielkes it more robust and
stable.

Future works will include to test the proposed normalizeégelar error to other RANSAC-
based approach on more input stereo pairs. About the ei@isitategy, further mathemat-
ical aspects can be investigated, as well as its applicagitire multiview geometry.
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