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Abstract

The estimation of the fundamental matrix from a set of corresponding points is a
relevant topic in epipolar stereo geometry [10]. Due to the high amount of outliers be-
tween the matches, RANSAC-based approaches [7, 13, 29] have been used to obtain the
fundamental matrix. In this paper two new contributes are presented: a new normal-
ized epipolar error measure which takes into account the shape of the features used as
matches [17] and a new strategy to compare fundamental matrices. The proposed error
measure gives good results and it does not depend on the imagescale. Moreover, the new
evaluation strategy describes a valid tool to compare different RANSAC-based methods
because it does not rely on the inlier ratio, which could not correspond to the best allow-
able fundamental matrix estimated model, but it makes use ofa reference ground truth
fundamental matrix obtained by a set of corresponding points given by the user.

1 Introduction

In epipolar stereo geometry, the fundamental matrix F is a mathematical object which em-
beds the relation between corresponding points [10]. The computation of the fundamental
matrix is a crucial task in many computer vision applications, such as three-dimensional
reconstruction [27]. In order to provide its estimation, a relative small initial set of corre-
sponding matches is required. This set is typically obtained by comparing image features
extracted by a keypoint detector [17] according to a similarity measure obtained by a feature
descriptor [16]. Though a lot of work has been done in this area, outliers represent a high
portion of the initial matches used to compute the fundamental matrix and they can dramat-
ically influence the final result. In order to alleviate this issue robust estimation algorithms
have to be used, whose RANSAC (RANdom SAmple Consensus) [7] is the most popular.

The fundamental matrix model F is estimated from a random-chosen minimal set of
matches, which reduces the change of the model to be contaminated by outliers, and it is
tested against the whole set of matches according to any defined error measure. The best
F so far is retained after each iteration, and the computation ends after a fixed number of
iterations or until the probability to get a better model is low. The best inlier set is used to
compute the final fundamental matrix [10].

Different approaches have been proposed to enhance RANSAC by improving the cost
function [11, 29] and the sampling strategy [3, 4, 13, 15, 18, 19, 23, 25], or to deal with
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degenerate configurations [5, 8] and allow faster model checks [14, 20, 22], but also other
similar approaches exist [6, 24, 31].

In order to compare different RANSAC-based strategies, thecomputational efficiency
and thecorrectness of modelare considered. For the latter measure, the inlier ratio is usually
adopted in the case on non-synthetic data [13, 25, 29]. However it does not always coincide
with the most appropriate one, though it is the optimizationfunction RANSAC tries to max-
imize, as in the case of scenes which contain a dominant planeor when error cost functions
are not directly comparable. On the other side, to check correct matches by user inspection
can be difficult in the case of huge amount of matches and it canbe subjective, too.

The direct comparison between the correct and estimated fundamental matrices has been
also proposed, however it does not provide a valid error measure [30], while sampling dis-
tances between the true and the estimated corresponding epipolar lines can provide good
evaluations [30].

In this paper, two contributions are presented. A new normalized epipolar error measure
to select inliers to estimate the fundamental matrix is described in Section2, which takes into
the account the shape of the features and does not introduce any further relevant computation.
Moreover, it does not depend on the image scale, due to the normalization, and increases the
model estimation.

Lastly, a new method to compare the fundamental matrix is provided in Section4. It
does not rely on the input matches but indirectly employs a user-provided ground truth fun-
damental matrix, which can be obtained easily by a small number of hand-taken matches.
Evaluation results are discussed in Section3 and final conclusions are reported in Section5.

2 The new normalized epipolar error

Given a stereo image pair(I1, I2) and corresponding pointsx1 ∈ I1, x2 ∈ I2 in homogeneous
coordinates, the fundamental matrix F determines the relation xT

2Fx1 = 0. Geometrically
the pointx1 is constrained to lie on the epipolar linel1 = xT

2F, and in similar wayx2 on
l2 = xT

1FT. Epipolar lines pass through the epipolese1 ∈ I1, e2 ∈ I2, which are respectively
the right, left null-space of F [10].

The fundamental matrix F can be extracted by 8 or more correctcorrespondences by us-
ing the eight-point algorithm [10]. More matches are provided, better will be the estimation
F, but the presence of outliers can strongly affected it [10]. Furthermore, it was shown in [21]
that it is possible to obtain from 3 up to 10 feasible fundamental matrix solutions when 7 to
5 corresponding points are used respectively.

In order to estimate the goodness of the model, RANSAC tries to maximize the function
ξ of the number of correspondences for which the errorε is less than the threshold value
t [7]

ξ (ε)
{

1 if ε < t
0 otherwise

(1)

while MSAC (M-estimator SAC) [29] saturates the error up to the threshold valuet and a
mixture between a Gaussian distribution for inliers and a uniform distribution for outliers is
used in MLESAC (Maximum Likehood Estimator SAC) [29]. The Sampson error [10] is
usually chosen as error measureε, but also the distanced of a pointx to the corresponding
epipolar linel

d(x, l) =

∣∣∣∣
lx
(x)3

∣∣∣∣
(
(l)2

1+(l)2
2

)− 1
2

(2)
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where (a)k is the k-th component of the vectora, that is the epipolar distanced(xi , li).
Slightly better results have been reported with the former error measure [10].

Let R1 ∈ I1, R2 ∈ I2 be two elliptical feature patches centred inx1, x2 as commonly
extracted by feature detectors [17], with minor and major axes respectivelyαmini , αmaxi ,
i ∈ {1,2}. As done for the feature descriptor computation [16], the scale is increased by a
factor of three to include the boundary data.

The error measureκi in the imageIi , for the feature pair(R1,R2) is defined as

κi = min

(
d(xi , li)
αmini

,1

)
(3)

that is, the epipolar distanced(xi , li) between the feature centrexi and its epipolar lineli ,
computed by using the corresponding point in the other image, is normalized by the minor
axis of the feature ellipseRi .

The errorκi achieves the maximal value of 1 roughly when the supposed reprojected
feature ellipse would not touch the actual ellipse, as shownin Figure1. Clearly, when acci-
dentally a wrong featureRi lies close to the correct epipolar lineli , the errorκi is misleading,
as it also happens for both the Sampson error and the epipolardistanced (xi , li). To take into
the account the possible error committed by the keypoint detector in the extraction of the fea-
tureRi , the minor axisαmini is preferred to the major axisαmaxi in the normalization, i.e. a
more pessimistic assumption is made for the worst case scenario. However, since the feature
axis ratio is usually related to the intensity variation of the keypoint region in all directions,
which detectors often try to maximize [2, 17], the values ofαmaxi andαmini are usually close.

The proposed errorκi does not depend on the image scale and provides a soft threshold
t on ξ , thus a possible overfitting on matches derived by a non-optimal choice oft can be
alleviated.

About the complexity of the normalized epipolar errorκi with respect to the standard
epipolar distanced(xi , li), only a negligible overhead is added for computing in advance the
minor axis length for each feature involved in the matching,plus the time required by a
division and a max operation at runtime.

Figure 1: Examples of different values of the normalized epipolar distanceκi . The dark
grey circle represents the reprojected feature supposed bythe error measureκi , the light grey
circle is the approximation of the feature ellipseRi . The epipolar distanced (xi , li) is given
by the dark grey segment joining the centres of the two circles and the minor axisαminI is
shown as the light grey segment.
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3 Proposed evaluation strategy

3.1 Motivations

In order to compare fundamental matrices estimated by different algorithms on non-synthetic
data, the inlier ratio is commonly adopted [13, 25, 29]. Although the maximization of
the number of inliers coincides with the formulation of the optimization problem used by
RANSAC-based approaches, i.e. find the best F compatible with the largest input dataset,
this does not always correspond to the desired real solution. To test different algorithms in
the case of the computation of the fundamental matrix, it canbe easily seen that the threshold
t should remain fixed. By increasing the threshold, a large consensus set of points is usually
found which could wrongly lead to include outliers. On the other side, by choosing a lower
threshold valuet correct inliers can be discarded and no sufficient data couldbe present to
get a good estimate F. A reasonable value oft which should be maintained fixed among the
different algorithms have to be used, but it cannot always beadopted when the error mea-
sure are not commensurable. This is the case of a comparison between the epipolar distance
d(xi , li) expressed in pixel and the new proposed normalized epipolarerrorκi which ranges
in [0,1].

Furthermore, the theoretical best model obtained by a robust estimator algorithm, could
not meet the correct solution even if a prefixed value oft is used. It can happen for instance
in some degenerate cases when a dominant plane is present as depicted in Figure2, where
the initial set of matches (see Figure2 (e)) contains an high fraction of outliers (red squares).
Although a higher number of putative inliers is found by the model (see Figure2 (a-b)),
which is clearly wrong, the true correct fundamental matrixpresents less true inliers (see
Figure2 (c-d)).

Moreover, it was shown that a direct numerical comparison between fundamental ma-
trices by the Frobenius norm does not provide a valid error measure [30], while sampling
distances between the true and the estimated correspondingepipolar lines can characterize
the error between the matrices [30].

3.2 The proposed approach

In order to deal with these issues a new relation between lines on the image is defined. Given
two linesr, s ∈ R

2, let Cr,s be the cone obtained by intersecting the two half-planes given
by r ands so that the minimum intersection angle is considered, as shown in Figure3 (a),
and the resulting surface is not null in the case of parallel lines as in Figure3 (b). When the
intersection angle isπ/2, any of the possible cones can be choose without distinction.

The intersection arealI of the image surfaceI andCr,s, normalized on the whole image
area surface is defined as

lI (r,s) =
A(I

⋂
Cr,s)

A(I)
(4)

whereA(·) defines the surface area. ThelI ratio can be seen as the minimum amount of work
inside the imageI needed to move a line to the other, withlI ≈ 0 when the lines are almost
the same.

Let F, li be the true fundamental matrix and the true epipolar line corresponding to the
pointxi ∈ Ii , i ∈ {1,2}, given the stereo pair(I1, I2), andF̃, l̃i as their estimation respectively.
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Figure 2: An example for which the best theoretical model obtained by RANSAC (a-b) does
not coincide with the real solution (c-d). In both cases, epipolar lines (blue lines) are shown
as well as inliers (squares). The initial set of matches (e) contains correct matches (green,
yellow squares) and wrong matches (red squares). A correct match (yellow square) is missed
in the bad model with an inlier ratio of 95%, opposing to the correct solution for which it is
63%.

For a pointxi ∈ Ii , the error

ϕi (xi) = lIi (x
T
i Fi ,xT

i F̃i) = lIi (li , l̃i)

with i = 3− i, Fi =

{
F if i = 1
FT otherwise

(5)

is an indirect measure between the matrices F andF̃ on the stereo image pair, which can be
seen as a dense generalization of the measure proposed in [30]. For each pointxi on the
imageIi, the epipolar linesli and l̃i are determined on the other imageIi , defining a mapϕi

which is almost continuous on the image, as shown in Figure4, and defines a fingerprint
of the difference between the matrices. Discontinuities can happen by switching the cone
surface near aπ/2 intersection angle, but only for high error models (see Figure 4 (d-e)).
The error measureϕi can be low for an high image portion, because for a finite epipole ei

and its estimatioñei the corresponding epipolar line pencils share a common lineq = ei × ẽi

for which lIi = 0 and due to the continuity near this map area low values can occur (see
Figure4 (d-f)). However, the maximumςi of ϕi

ςi = max
xi∈Ii

ϕi(xi) (6)

can give a good indication about the precision of the matrix estimationF̃ with respect to
the true fundamental matrix F when points from the imageIi are projected to imageIi . The
maximumς on both images

ς = max(ς1,ς2) (7)
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Figure 3: The coneCr,s (grey) in the case the linesr ands intersect (a) or are parallel (b),
and its intersection with the imageI (dark grey).

is finally used as error value. By considering the continuityof the mapϕi , in order to speed-
up the computation theςi values can be computed only on sampled pointsxi homogeneously
distributed on the imageIi, for instance on a grid.

4 Evaluation

4.1 Experimental setup

The new normalized epipolar errorκi has been compared against the Sampson error and
the epipolar distanced(xi, li), applied to RANSAC, MSAC and MLESAC. To distinguish
between them, the ‘no’ prefix is added in the case of thenormalized epipolar error. In order
to combine the error of both the images of the stereo pair in the case of epipolar errors
εi ∈ {κi,d(xi , li)}, three possible choices were considered, i.e. the symmetric epipolar error
usually adopted in the case of the epipolar distance [10]

εs =
ε1+ ε2

2
(8)

the max epipolar error
εm = max(ε1,ε2) (9)

and the geometric epipolar error

εg =
√

ε2
1 + ε2

2 (10)

A set of 10 sequences, made up of three images of a three-dimensional scene taken from
different points of view, have been used, for a total of 30 stereo image pairs, four of which
have been extracted from other works [26, 28, 32].

The HarrisZ keypoint detector [2] and the sGLOH descriptor [1], both proven to be robust
and stable, have been used to get the matches ranked by a nearest neighbour selection. The
former is based on the Harris corner detector [9], while the latter on the SIFT descriptor [12].

Different thresholdst have been used. In the case of the normalized epipolar error,the
whole range was tested, in particular 9 values from 0.1 to 0.9by a step of 0.1 were in-
vestigated. It was found experimentally that a range from 0.5 to 4.5 pixels covers the best
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Figure 4: Two different estimations of the same fundamentalmatrix. The points on the
imageIi (a,d) correspond to the estimated (solid) and the true (dashed) epipolar lines on the
other imageIi (b,e). Clearly the model on the top row (a-c) is better, as it is confirmed by
inspecting the sampled mapsϕi (c,f). In the bottom row model (d-f) there is a discontinuity
between the red and the green points, where the minimum anglemade by the epipolar lines
switches. When both the true and the estimated yellow epipolar lines pass through both the
estimated and the true epipolesϕi(xi) = 0%.

threshold setting for the epipolar distance and the Sampsonerror. A step of 0.5 was used in
this latter case to get 9 threshold values too.

In order to compare the methods, theϕi map was computed only on sampled points of
the stereo pair images, which have sizem×n. The points have been sampled on an uniform
Cartesian grid, where the strideu is determined byu= min(m,n)/30.

For each stereo pair the ground truth fundamental matrix wascomputed by using the
normalized eight-point algorithm [10] on more than 50 hand-taken correspondences, homo-
geneously distributed on the images. A maximum of 5000 iterations was set for each method
and the final matrix estimation is computed again by the normalized eight-point algorithm
on the best inlier set found by the method.

To take into account the randomness of RANSAC-based algorithms, the resultingς error
values are averaged on 30 runs for each possible choice of algorithm/threshold considered,
for a total ofv = 189 different combinations, and the same random seed is usedfor each
iteration among the different algorithm/threshold possibilities. Finally, for each stereo pair
the different methods have been ranked according to the average of their errorsς , namedς .

4.2 Result

A global bar plot summarizing the results is reported in Figure 5. The global error of each
method in the corresponding threshold range,[0,1] for κi and[0,4.5] pixels ford (xi , li) is
reported. For each stereo pair, the errorς for each method has been normalized by the mean
and the standard deviation computed on the stereo pair itself, because the different errors are
related to the complexity of the images which can vary with different stereo pairs. Next the
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final global error for a method is obtained by averaging the method errors on all the stereo
pairs, shown in the plot normalized in the range[0,1], higher bars means lower error values.

The error distribution can be retrieved also by looking at the different horizontal lines,
which correspond to different error data percentiles, e.g.a value of 20th% means the value
of the sorted data in increasing order at position 20%×v= 20%×189= 47. More close are
lines, denser is that data error region. Data after the 90th%error are not shown to improve the
visualization. According to the error distribution, almost all methods provide similar results

Figure 5: Global error for each methods. Higher bars indicate better results (see text).

since almost all error values are accumulated near the 25th%rank position. As it can be seen,
normalized RANSAC and MLESAC, namely noRANSAC and noMLESACseems better
than their original counterparts, while the opposite holdswhen comparing noMSAC with
MSAC. Moreover, noMLESAC and MLESAC give the best results, followed by noRANSAC
and RANSAC.

Furthermore, in the case of the normalized epipolar error the best threshold ranges around
[0.3,0.5], while this is different from RANSAC to MLESAC, as it can be seen from the po-
sition of the peaks in the plot. This is an experimental evidence that the normalized epipolar
distance is more independent from both the method and the kind of images than its absolute
counterpart, which implies higher stability and robustness of the proposed error measure.

As a further note, the geometric errorεg seems to provide the best results, while the
Sampson error seems slightly less effective, opposing to what observed in [10].
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5 Conclusions and future works

In this paper, a new normalized epipolar error measure is proposed to estimate the fundamen-
tal matrix with RANSAC-based approaches. The new distance makes use of data provided
by the shape of the keypoints used as the point correspondences between the stereo image
pair, with no further relevant computation.

In order to provide a comparison with existent error measures a novel evaluation strategy
has been proposed too. It does not rely on the input matches but it indirectly employs a user-
provided ground truth fundamental matrix, which can be obtained easily by a small number
of hand-taken matches. No threshold-related issues are present, the results are more close to
the required real solution and a meaningful measure is deduced.

According to the new evaluations strategy, the new normalized epipolar distance provides
better results when applied to RANSAC or MLESAC and moreoverit is more independent
both from the applied method and from the input images, whichmakes it more robust and
stable.

Future works will include to test the proposed normalized epipolar error to other RANSAC-
based approach on more input stereo pairs. About the evaluation strategy, further mathemat-
ical aspects can be investigated, as well as its applicationto the multiview geometry.
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