NoRANSAC for fundamental matrix estimation
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The estimation of the fundamental matrix from a set of cqoesling
points is a relevant topic in epipolar stereo geometry [2]e Do the high
amount of outliers between the matches, RANSAC-based appes [1]
have been used to obtain the fundamental matrix.

cases, for instance when a dominant plane is present anditiaéset of
matches contains an high fraction of outliers.

In order to deal with these issues a new relation betwees laome
the image is defined. Given the true epipolar lipand its estimation

We introduce a new normalized epipolar error measure wizikbst TT on the imagd- corresponding to the poing on the other imagé;, a

into account the shape of the features used as matches [2]casdnot
introduce any relevant computational cost.

Moreover, a new evaluation strategy is described as a vadidto
compare the estimated fundamental matrices. It does nobrethe in-
lier ratio, which could not correspond to the best allowdhledamental
matrix estimated model, but it makes use of a reference grtouth fun-
damental matrix obtained by a set of corresponding pointsngby the
user.

cone is obtained by intersecting the respective two halfigb so that the
minimum intersection angle is considered (in the case odlf@rines
the non-empty intersection is taken). The resulting serfacx;) on I,
normalized to the image area, can be seen as the minimum &mbun
work needed to move the estimated epipolar line to the cooree

Thus an indirect measure between the fundamental matriaed s
estimationF can be draw out for each point in the stereo pair. The cor-
responding error surface is almost continuous on the imagshown in

Let %1, % be two elliptical feature patches belonging respectivetygure 2, and defines a fingerprint of the difference betwéennatri-
to the imaged, Iz, centred inxy, X2 as commonly extracted by featur@es. This error measugg can be low for an high image portion, because

detectors [3], with minor and major axes respectivelyn,, Omax, | €
{1,2}. The error measurg in the imagd;, for the feature pait%1, %2)

is defined as
Ki = min ( ,1)

that is, the epipolar distanc¥Xx;, ;) between the feature centxgand its

d(x;,li)
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for a finite epipoleg and its estimatioig the corresponding epipolar line
pencils share a common line for whigh = 0 and due to the continuity
near this map area low values can occur (see Figure 2 (d-QyveMer,
the maximumyg; of ¢;
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epipolar linel;, computed by using the corresponding point in the otHe&n give a good indication about the precision of the matstingation

image, is normalized by the minor axis of the feature elligge

F with respect to the true fundamental matrix F when pointenfthe

The errork; achieves the maximal value of 1 roughly when the suip?agel; are projected to image. The maximumg on both imageg =
max(G1, ¢2) is finally used as error value.

posed reprojected feature ellipse would not touch the bellipse, as
shown in Figure 1. Clearly, when accidentally a wrong feat# lies
close to the correct epipolar lirig the errork; is misleading, as it also
happens for both the Sampson error and the epipolar disthix¢g; ).

The proposed errak; does not depend on the image scale and p
vides a soft thresholtito be used by RANSAC approaches, thus a pos-

sible overfitting on matches derived by a non-optimal cheitecan be
alleviated.

Finally, the error on both the image is combined into a vetoks]
and leads to different error measures. In particularlthel, and L
norms have been used, denoted as the symmetric, geometrimax
errors respectively.

In order to compare fundamental matrices estimated byrdiffeal-
gorithms on non-synthetic data, the inlier ratio is commadopted [4].
Although the maximization of the number of inliers coin@ddeith the
formulation of the optimization problem used by RANSAC-bdsap-
proaches, i.e. find the best F compatible with the largesitidataset,
this does not always correspond to the desired real solution

Figure 2: Two different estimations of the same fundamemiatix. The
points on the imagéd (a,d) correspond to the estimated (solid) and the
true (dashed) epipolar lines on the other imggdb,e). Clearly the model
(a-c) is better, as it is confirmed by inspecting the samplads#®; (c,f).

In the model (d-f) there is a discontinuity between the red @@ green
points, where the minimum angle made by the epipolar lindsches.
When both the true and the estimated yellow epipolar lines garough
both the estimated and the true epipapes ) = 0%.

According to the new proposed evaluations strategy, thenoemalized
epipolar distance provides better results when applied ADlRAC or
MLESAC, defined as noRANSAC and noMLESAC respectively, espe

For istance, by increasing the thresholda large consensus set ofially with the geometric and the max errors. Moreover, iesl@ot de-

points is usually found which could wrongly lead to includetlrs.
Moreover, when threshold errors cannot be comparable ddeetalif-
ferent error measures adopted, it could be misleading tqpacenmeth-
ods for the fundamental matrix estimation according to tiieeii ratio.
Furthermore, the theoretical best model obtained by a tastisnator al-
gorithm, could not meet the correct solution in some fretjdegenerate

Figure 1: Examples of different values of the normalizedpelar dis-
tancek;. The dark grey circle represents the reprojected featynpcaed

by the error measurs;, the light grey circle is the approximation of the

feature ellipseZ;. The epipolar distanag(x;, |;) is given by the dark grey
segment joining the centres of the two circles and the miris @i, is
shown as the light grey segment.

pend on the input image scale, which makes it more robust bodsaa
stable threshold selection for RANSAC-based approaches.

Details of the proposed methods, of the experimental etialuand
results are described in the paper.
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