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Abstract

We propose an algorithm for the detection and reconstruction of plane surfaces using
a new stereo approach dubbed SymStereo. SymStereo relies in symmetry analysis for re-
covering the 3D curve where a virtual cut plane intersects the scene structure. The result
is a profile cut that resembles the one that would be obtained by a Laser Range Finder
(LRF). The article shows that the framework is particularly well suited for piecewise-
planar reconstruction using only a pair of calibrated views. Since the intersection of two
planes is always a line, the 3D space is sampled by a discrete set of virtual planes and
the line segments in the profile cuts are extracted. The plane surfaces are determined by
grouping co-planar lines using a straightforward RANSAC procedure in the dual Plücker
space. We test the algorithm in estimating the relative pose of the stereo rig with respect
to planes with different textures. The results are highly accurate and, more importantly,
the approach succeeds in situations where current stereo methods fail due to low and/or
repetitive texture. We also report experiments in wide-baseline stereo images of complex
scenes with multiple planes partially occluded by non-planar objects.

1 Introduction
Recovering 3D structure from stereo is a classical problem in computer vision with thousands
of references in the literature. The approaches can be coarsely divided in two groups: sparse
stereo (SS), that uses as input a sparse set of matching features across views; and dense
stereo (DS), that performs dense data association between images by assigning to each pixel
a disparity value. The former is used for recovering the camera parameters and/or obtaining
a sparse point cloud model of the structure [12], while the latter usually assumes calibrated
cameras and aims to achieve a complete 3D model of the scene [15]. The stereo approach
presented in here, dubbed SymStereo, is somewhere between SS and DS. Given a calibrated
stereo pair, we show how to reconstruct the curve where a virtual cut plane intersects the
scene structure (see Fig. 1 (a) and (b)). While standard stereo relies on photo-consistency
for matching pixels, we detect the image of the profile cut using signal symmetry analysis.
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This is possible because, when the virtual plane is assumed to pass between the cameras,
the homography mapping of one view into the other gives rise to a warped image that is
mirrored with respect to the profile cut projection. Thus, the sum of the original and warped
frames is symmetric with respect to this contour, and the image of the profile cut can be
robustly determined by applying log-Gabor wavelets [10]. An important advantage of the
symmetry cue is its global character that enables matching textureless image regions where
photo-consistency measurements are ambiguous. Another interesting property of SymStereo
is allowing to probe into the scene structure in a new and controlled manner. Given two
images we are able to generate 3D data similar to the one that would be acquired by a LRF
with the scan plane coincident with our arbitrary virtual cut plane. The article explores this
unique feature for developing a new algorithm that, given two calibrated images, it detects
and reconstructs planar surfaces in the scene.

Piecewise planar models have recently become popular for the reconstruction of man-
made environments [6, 9, 14, 16, 19]. Using the strong planarity assumption as a prior for
stereo overcomes difficulties caused by poorly textured surfaces and non-Lambertian reflec-
tions (e.g. windows). The achieved 3D models are perceptually pleasing and geometrically
simple and, thus, their rendering, storage and transmission is computationally less complex.
Unfortunately, locating planar surfaces in the scene for establishing plane hypotheses can
be a very challenging task. As several approaches are described in the literature, the most
recent and relevant are referenced. Bartoli obtains an initial sparse point reconstruction and
applies a RANSAC-like algorithm for generating and scoring the plane hypotheses [2]. The
approach lacks robustness to be used in complex scenes with several planar and non-planar
surfaces. Assuming a Manhattan-world model, Furukawa et al. [6] reconstruct 3D patches
from textured image regions, and uses their orientation to establish plane hypotheses. In
[16], evidence about planar surfaces is collected using simultaneously point cloud recon-
struction, estimation of vanishing lines, and sparse reconstruction of edges. Multiple cues
and assumptions are also used in [14, 19] to find dominant surface orientations and perform
plane-sweeping reconstruction in an optimal sweeping direction. Recently, Gallup et al. [9]
proposed a modified RANSAC procedure for segmenting planar patches in dense multi-view
stereo reconstructions. Although the above works address the problem in different manners,
they all use multiple images to collect enough 3D evidence for supporting the plane hypothe-
ses. Unlike these works, our article describes an algorithm for piecewise-planar reconstruc-
tion that uses only two calibrated images. The method can be useful for many applications,
specially now that handheld stereo cameras, such as FujiFilm FinePix 3D and Sony Bloggie
3D, arrived to the consumer electronics market.

2 SymStereo: Stereo from Induced Symmetry
The plane sweeping algorithm was first introduced by Collins [4] and since then it has been
widely used in dense depth estimation [20]. The basic idea consists in sampling the 3D space
by a family of parallel virtual planes, back-project the images onto these planes, and find the
locations where the back-projections are most similar. Ideally, these locations correspond to
the intersection points of the plane with the imaged surfaces, which enables depth recovery.
Recent forms of the algorithm avoid explicit back-projection and search for photo-consistent
regions on the image plane after warping by the virtual plane homography [8].

Our approach for stereo reconstruction relates with plane-sweeping in the sense that it
also samples the 3D space by virtual planes. However, there are two major differences: (i) we
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Figure 1: The left and right images are respectively I and I′. The virtual cut plane in (b),
passes between the cameras, and intersects the structure in a non-continuous 3D curve (the
profile cut). Is and Ia are symmetric and anti-symmetric with respect to image contour of
the profile cut. They are rendered by adding and subtracting the original image I with Î, that
is the result of warping I′ by the plane homography. (d) shows the intensity level of Is and
Ia for three distinct epipolar lines (red, green and blue). The intersections with the profile
cut projection can be identified with almost no ambiguity by searching the pixel location for
which the top and bottom 1D-signals are respectively symmetric and anti-symmetric.

exclusively consider virtual planes that intersect the baseline in a point between the cameras;
and (ii) instead of looking for photo-consistent regions after image warping, correspondences
are established by detecting a mirroring contour using symmetry analysis. Works assuming
multiple plane sweeping directions [8] consider virtual planes passing between the cameras
a degenerate configuration to be avoided. The reason is as follows: Let I be the left stereo
image and Î be the result of warping the right image I′ by the plane homography mapping.
If the virtual plane crosses the baseline, then I and Î, instead of being photo-consistent,
are reflected one with respect to the other around the pixel location where the plane cuts the
structure. It is formally proved in [1] that this mirroring effect holds in general independently
of the scene structure. The only singularity is the rare situation of double nail ilusion where
the ordering constraint is violated [17].

Given the above, the sum of I and Î yields an image signal Is that is symmetric around
the image contour of the profile cut (see Fig. 1(c)). In a similar manner, the subtraction of
Î from I gives rise to an image signal that is anti-symmetric at the exact same location (see
Fig. 1(e)). This work explores these properties and proposes SymStereo, which reconstructs
the profile cut by applying log-Gabor wavelet analysis (see [10] and [1]) for detecting the
common pixel locations where Is and Ia are respectively symmetric and anti-symmetric. As
discussed in [1], the symmetry cue is affected by depth change, but the log-Gabor detection
is robust to these deviations with SymStereo being able to accurately reconstruct extremely
slanted surfaces.

3 Algorithm for Piecewise-Planar Reconstruction
This section describes an algorithm that uses induced symmetry from stereo for detecting
and localizing planar surfaces in the scene. Since two planes always intersect into a line, we
take advantage of this prior for achieving the goal by searching for ’line cuts’. A discrete
set of N virtual cut planes intersecting the baseline in its midpoint is employed for probing
into the 3D structure. The projection of the curve where each cut plane meets the scene is
detected based on symmetry analysis. Line segments are extracted from the contour using a
Hough transform, and the corresponding line cuts are reconstructed by back-projection into
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Figure 2: Image detection of profile cuts and segmentation into line cuts. Column (a) shows
the input stereo pair. The rows in (b) to (f) refer to different cuts generated from three distinct
virtual planes. The images of the reconstructed profile cuts are overlaid in (a) using different
colors (magenta, yellow, and cyan). It can be observed that the repetitive texture of the floor
gives rise to several local maxima in both Es and Ea, which precludes a correct detection of
the relevant contour using a single type of energy. E is the pixel-wise multiplication of Es
and Ea and highlights pixel locations with both types of energy. We run ridge detection in
E for locating the image of the profile cut (overlays at magenta, yellow, and cyan). The line
segments in each contour detection are subsequently extracted using Hough transform (over-
lays at green, blue and red in (a)). The final line cuts are reconstructed by back projection on
the virtual cut planes.

the virtual plane. Finally, all the recovered line cuts are clustered in a RANSAC stage using
a co-planarity criterium. Each detected cluster gives rise to a plane hypothesis.

3.1 Processing each virtual cut plane

Let’s assume a particular virtual cut plane Π, e.g. the yellow cut plane in Fig. 2. If Π

intersects a planar surface, then the corresponding profile cut must contain a straight line
segment (the blue line in Fig. 2).

Measuring Signal Symmetry - As described in Section 2, from each cut plane Π we
render a pair of image signals Is and Ia, that are respectively symmetric and anti-symmetric
around the contour where the profile cut is projected (see Fig. 1). The contour detection in
these images requires to somehow quantify the signal symmetry and anti-symmetry along the
epipolar lines. This is achieved by following the approach proposed by Kovesi in [10], that
uses a Log-Gabor wavelet transform for generating a symmetry and anti-symmetry energy
at every image pixel location (refer to [1] for a detailed description). These energies are
denoted respectively by Es and Ea, and can be observed in Fig. 2(c) and (e).

Detecting the projection of the profile cut - It follows from the discussion of Section
2, that the contour that we aim detecting corresponds to an image pixel location for which
it simultaneously occurs a maximum in Es and Ea. Thus, the joint energy E is generated
by pixel-wise multiplication of Es and Ea. As observed in Fig. 2(f), this operation enables
to discard many spurious local maxima that arise both in the symmetry and anti-symmetry
energies. The projection of the profile cut is finally found by running standard ridge detection
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in E [5]. The detection results are overlaid in the images of symmetry and anti-symmetry, Is
and Ia, as well as on the stereo pair of Fig. 2 (each color refers to a different cut plane). There
are some minor spurious detections that could be easily discarded with further refinement
(e.g. to enforce the constraint of a unique detection per epipolar line).

Reconstructing line cuts - The ridge points detected in the joint energy E are used as
input to a Hough transform that aims extracting line segments from the image of the profile
cut. The result of this step is shown overlaid in the stereo pair of Fig. 2. The algorithm
succeeds in finding the image of the line where each cut plane meets the floor.

3.2 Plane surface detection and reconstruction
At this stage we have a set of 3D lines computed from various cut planes. In order to cluster
sets of co-planar lines, the contributions of all virtual planes are used as input in a RANSAC
procedure. Each group of lines gives rise to a plane hypothesis contained in the scene.

Regarding the RANSAC implementation, there are aspects that we would like to point
out: (i) the RANSAC search is carried in the dual 3D space with the lines parametrized in
dual Plücker coordinates. Thus, the RANSAC seeks for sets of dual lines that are incident
into a single point. This point is the dual representation of the plane hypothesis; (ii) Since a
virtual cut plane cannot intersect the same plane hypothesis in two distinct lines, the sampling
step always selects lines from different cut planes. (iii) After determining a plane model, the
inlier set is calculated from the Euclidean distances of the plane to the lines.

4 Pose Estimation of a Single Plane Surface
This section assumes that the scene is dominated by a planar surface that might, or might
not, be partially occluded by non-planar objects. We experiment in estimating the relative
pose between the stereo rig and the plane for the case of different textures. The accuracy of
the estimation is carefully evaluated with respect to ground truth data, and the performance
of our algorithm is compared with two other strategies.

4.1 Data Acquisition and Estimation of Ground Truth
The first column of Tab. 1 shows different planar textures that were considered in the ex-
periment1. These textures were divided into three categories: (i) Texture: corresponding
to cases that are accessible for most stereo methods; (ii) Middle texture/Repetitive pattern:
comprising examples that are challenging because of the existence of textureless regions,
specularities, and/or repetitive patterns; and (iii) Low texture: corresponding to surfaces
with very flat texture where most stereo methods are likely to fail. There is a fourth group
concerning examples where the dominant plane is partially occluded by non-planar objects.

For each texture we acquired between 6 to 10 stereo pairs using a Bumblebee from Pt-
Grey, with a baseline of 12cm and image resolution of 640× 480. Each data set comprises
images captured from different distances and relative rotation, with the depth and slant ranges
being shown under the column of ’Dataset Info’. The Bumblebee was mounted on a tripod
and the lighting conditions of the scenes were maintained unchanged. For each stereo pair
used as input for the algorithms, we acquired an additional calibration pair with a checker-
board pattern attached to the planar surface. This calibration pair enabled to obtain accurate

1We only show results of 7 out of 12 textures. The complete experiment can be found in [1]
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ground truth, by estimating the plane-to-image homographies from clicked points, and per-
forming a suitable factorization of the result [12].

4.2 Compared Algorithms
We compare the following methods for recovering the relative pose:

SymStereo - This is our method that is described in the previous sections. The results
shown in the table were obtained using N = 21 virtual cut planes, that intersect the baseline
in the middle. From the 21 planes, 7 are vertical and equally spaced in azimuth, while the
remaining 14 are obtained by slanting each vertical plane by an angle of ±18.5◦ 2.

Sparse Stereo (SS) - A set of sparse point correspondences between views is obtained
using the SIFT algorithm [11]. Outliers are discarded based on the epipolar geometry derived
from the camera calibration. The inliers are used as input in a RANSAC procedure that
robustly estimates the pose of the dominant plane. Although we do not discuss herein the
implementation details, it is important to emphasize that the RANSAC generates solutions
from sets of 3 point correspondences. We use the fact that the rigid displacement between
cameras is known, and estimate only the plane location. This is different from computing the
homography and then factorize the result into rotation, translation, and plane location [12].
This assures a fair comparison between approaches, with all competing methods taking full
advantage of the information that is available.

Dense Stereo (DS) - The surface is determined by fitting a plane to the 3D reconstruc-
tion obtained after dense stereo matching. The fitting is done in a robust manner using a
straightforward RANSAC procedure. The stereo matching is performed using Normalized
Cross-Correlation (NCC) with a 21× 21 window. The size of the window was experimen-
tally tuned in order to optimize accuracy and convergence of pose recovery in the evaluation
images. Admittedly, such a large window is unlike to be the optimal choice for reconstruct-
ing scenes with depth discontinuities

It is worth mentioning that we experimented with a global MRF formulation [3] before
deciding to use NCC. The reasons for this decision are twofold: (i) we did not notice signif-
icant differences in the results achieved with MRF and NCC. Typically, global approaches
outperform local methods in situations of occlusion and discontinuity. Since such cases do
not arise in our evaluation data, there was no clear advantage in choosing the MRF; and (ii)
the MRF optimization is difficult to tune for converging both in close (20cm) and medium
(1-2m) range images. Thus, we often observed situations of divergence in stereo pairs that
the NCC would handle without a problem.

4.3 Results
The right side of Tab. 1 shows the average results for each data set using the different meth-
ods. The column ’Failure’ indicates the percentage of stereo pairs for which the algorithm
was unable to estimate a plausible relative pose. A%(B+C) means that the in B% of the cases
the RANSAC procedure did not converge, while in C% of the cases the estimation result was
discarded because the error was above a pre-defined threshold (5% for translation, and 5◦

for rotation). The column ’RMS Error’ concerns the accuracy of the relative pose estima-
tion when the algorithm succeeds. For each data set we show the Root Mean Square (RMS)

2We experimented with a varying number of cut planes N and the results are available in [1]. For the case
of ‘Textured’ surfaces, the algorithm provides accurate plane pose estimations even when the number of cuts is
minimum (N = 2).
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Table 1: Experiments in Relative Pose Estimation.
Dataset Info Method Failure RMS Error Average

Trans.% Rot.(deg) Ransac time(sec)

Te
xt

ur
e

Sq
ua

re
s Depth (mm) 444−716 SymStereo 0% 0.6 1.1 0.1

Slant (deg) 2−40 DS 0% 0.4 1.0 0.63
# Images 10 SS 0% 0.2 0.8 0.05

M
ed

iu
m

Te
xt

ur
e

W
oo

d2 Depth (mm) 335−997 SymStereo 0% 0.8 1.8 0.13
Slant (deg) 39−61 DS 38%(0+38) 2.3 2.1 12.68
# Images 8 SS 27%(13+14) 1.5 2.5 0.93

Sh
ee

t2 Depth (mm) 321−800 SymStereo 0% 3.9 1.3 1.87
Slant (deg) 21−51 DS 83%(0+83) 6.9 2.0 16.35
# Images 6 SS 83%(0+83) 1.8 4.8 3.57

L
ow

Te
xt

ur
e

W
al

l1 Depth (mm) 226-530 SymStereo 17%(17+0) 1.1 2.7 0.74
Slant (deg) 3-32 DS 83%(0+83) 1.0 1.9 28.67
# Images 6 SS 100%(100+0) - - 0

W
al

l2 Depth (mm) 268−1105 SymStereo 0% 0.9 3.9 0.76
Slant (deg) 3−50 DS 80%(0+80) 0.6 3.1 28.84
# Images 10 SS 90%(90+0) 0.2 2.2 0.14

O
bj

ec
tO

cc
lu

si
on

B
al

l1 Depth (mm) 444 SymStereo 0% 0.8 1.2 0.1
Slant (deg) 32 DS 0% 0.5 0.6 1.62
# Images 3 SS 33%(0+33) 1 1.6 3.21

B
al

l2 Depth (mm) 490 SymStereo 0% 0.6 2.0 0.27
Slant (deg) 30 DS 67%(0+67) 10.6 1.6 27.32
# Images 3 SS 100%(0+100) - - 32.75

value of the relative error in translation (’Trans’), as well as the angular error in orientation
(’Rot’). Finally, the last column presents the RMS of the time interval that the RANSAC
took to converge. These values were measured in a Matlab implementation, and are shown
just for the sake of comparison between methods.

The three algorithms show a good behavior for the case of textured surfaces. The SS
seems to be slightly more accurate, but the difference is negligible. More relevant is the fact
that for the DS the RANSAC takes significantly longer to converge. This is not surprising
because the cardinality of the input data is close to the image resolution. The time for clus-
tering the co-planar points tends to grow exponentially with the number of outliers (e.g noisy
3D reconstruction, multiple surfaces, etc).

For the second texture category both SS and DS start to break. The failure of SS is ex-
plained by the problems in detecting enough keypoints that can be reliably matched. The DS
has difficulties in handling repetitive patterns that are smaller than the correlation window
(’Sheet2’), or have flat texture along the epipolar lines direction (’Wood2’). This causes am-
biguity in the dense stereo matching that affects the 3D reconstruction and plane localization.
The performance of the SymStereo is similar to the one observed for the ’Textured’ category.
For the ’Sheet2’ there is a small decrease in translation accuracy, but this is mainly due to
the lack of resolution for imaging a small pattern when the depth increases.

The third category comprises examples of almost textureless surfaces, where both SS and
DS have notorious difficulties in delivering acceptable results. Surprisingly the SymStereo
has almost no failures. The reason for this behavior is the global character of the symmetry
analysis used in the detection of the mirroring contours. The virtual cut plane can intersect
the surface in a completely flat region. However, and as shown in Fig. 3, nearby regions
with some type of texture (e.g. small stain, scratch on the wall, etc) immediately contribute
to define the correct symmetry when rendering the images Is and Ia. In this case, and as
observed in the experiments, the accuracy of contour detection tends to decrease because the
symmetry response is only at high wavelet scales. The experiments with objects on the top
of the plane show that the SymStereo handles well partial occlusions.
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(a) I (b) I′ (c) equalized I (d) equalized I′ (e) equalized Is (f) equalized Ia

Figure 3: Line cut detection in a very low-textured surface (Wall1 in Tab.1). (a)-(b) shows
the stereo images used as input to the algorithms. Fig. (c)-(d) and (e)-(f) are respectively the
stereo pair and the symmetric and anti-symmetric signals after contrast enhancement (the
equalization is performed only for visualization purposes). It can be observed that there is a
thin scratch and very faded texture due to the wall rugosity. This is not enough for SS and
DS to provide accurate reconstruction results. However, the scratch is sufficient to create a
symmetry that enables SymStereo to correctly localize the line cut.

5 Detection and Reconstruction of Multiple Planes in
Natural Scenes

This section shows results in detection and localization of multiple planar surfaces from a
single stereo pair. The algorithm is similar to the one used in the previous experiment, with
the difference that now we run RANSAC till convergence, remove the clustered co-planar
lines, and repeat the procedure until generating a pre-defined number of plane hypothesis.
In the absence of accurate ground truth, and since most images are scenes of man-made
environments, the errors in plane orientation are estimated from likely relative parallelism
and orthogonality.

(a) 2 Planes (b) 3 Planes (c) 3 Planes with Occlusion

Figure 4: Multiple plane detection in indoor scenes. Dashed lines correspond to the pro-
jection of the reconstructed line cuts, while solid indicates the line cuts that were assigned
to one of the plane hypothesis by the RANSAC procedure (different colors signal different
planes). The algorithm succeeded in the 3 situations, with an estimated relative orientation
between planes of 92.1◦ for (a), 89.9◦ for (b), and 91.3◦ for (c) (average for the 3 planes).

Fig. 4 shows three stereo pairs of indoor scenes acquired with the Bumblebee. The Sym-
Stereo was run using N = 21 cut planes, and the localization of the plane surfaces was suc-
cessful in all cases. The plane reconstruction results achieved with our stereo technique are
suitable to be used as input data in "3D-plane-SLAM". This type of SLAM typically relies in
LRF [13, 18] and, to the best of our knowledge, vision has never been used for this purpose.

Fig. 5 shows two outdoor scenes where the planes are partially occluded by non-planar
surfaces. This is the type of environment targeted by the piecewise-planar reconstruction
algorithms described in [2, 6, 9, 16]. While these methods require multiple views, our ap-
proach is able to reach competing results using only a stereo pair. For localizing the planar
surfaces from the wide-baseline images of Fig. 5 we increased the number of cut planes from
N = 21 to N = 75. After performing the detection in a manner similar to the previous exper-
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Figure 5: Wide baseline stereo of outdoor scenes. The first row concerns the Out1 example
[14], while the second row refers to the Walls example [7]. For each case we show the two
stereo images, the left image with the pixels marked with different colors depending on the
plane hypothesis to which they were assigned (similar to [9]), and three views of the obtained
piecewise planar reconstruction. We detected and reconstructed 4 planes in each example.
For Out1 the average of the angle between the normals of the parallel vertical planes is 0.9◦,
and between the normals of the vertical planes and the floor is 88.1◦. In Walls, the average
angle between the normals of the vertical planes is 0.7◦, and between the normals of the
horizontal planes is 5◦ (the ground has a repetitive texture and the verandah top is relatively
small). The mean angle between vertical and horizontal planes is 90.2◦

iment, each pixel in the left image was assigned to the plane hypothesis that maximizes the
photo-consistency with the right image. The result is shown in the middle column of Fig. 5.
Pixels with low photo-consistency for all planes or that belong to the plane at infinity [9],
were labeled as "discard" (dark blue). It is to expect that this labeling based exclusively in
photo-consistency presents holes and poorly defined region borders. Such issue can be eas-
ily solved using MRF refinement [9, 16]. However, we chose not to do it in order to better
assess the accuracy of our plane pose estimation.

The results of Fig. 5 show that it is possible to achieve accurate piecewise-planar recon-
structions of everyday outdoor scenes using a single stereo pair. Remark that non-planar
surfaces, like the bushes in Out1 and the bikes in Walls, are correctly labeled despite of the
depth proximity to detected planes. The fact that such segmentation is performed based only
in photo-consistency is a qualitative evidence of accuracy.

6 Conclusions
We built on the the first stereo algorithm that exploits induced signal symmetry for deter-
mining the 3D curve where a virtual cut plane intersects the scene [1]. The approach was
successfully applied in localizing planar surfaces using the fact that in this case the profile
cuts are straight lines. The line cut assumption was used as a prior for improving the detec-
tion of the relevant mirroring contours. However, the experiments provide evidence that the
symmetry cue alone is enough for reconstructing profile cuts of generic non-planar objects
(see Fig. 2) . This new stereo framework can be advantageous in many computer and robot
vision tasks other than planar surface reconstruction. First, while dense stereo techniques
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are meant to estimate the disparity in the entire image, our method is designed to exclusively
recover the depth along a predefined cut plane. This provides a new controlled manner for
probing into the scene 3D structure, as illustrated by the approach used in here for detecting
the planar surfaces. Second, as shown by the evaluation of Section 4, our approach succeeds
in reconstructing surfaces with low and repetitive texture that can not be handled by stan-
dard stereo algorithms. The explanation is that we rely in symmetry cues that have a more
global character than photo-consistency metrics used for the data association in the com-
peting methods. Third, each reconstructed profile curve is similar to the cut that would be
obtained by LRF with the laser plane aligned with our virtual cut plane. Thus, this new stereo
technique can potentially avoid the use of a second sensor modality in systems that combine
vision and LRF, or even replace the LRF in certain applications, such as 3D-plane-SLAM
[13, 18], with benefits in terms of cost and flexibility.
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