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Abstract 

We introduce a mechanism for improving the result of elastic registration for 
simultaneously acquired low-contrast fluorescent microscopy images. B-spline basis 
functions are commonly used for modelling nonrigid image deformations. We 
present a novel approach that improves the result of B-spline based registration 
process. This approach monitors the behaviour of local similarity measure values 
during optimization in order to recognize and exclude the pixels which drive the 
optimization into local optima. These are low intensity pixels, mostly in background 
regions but also in data areas, where there is no or little useful image structure to 
guide registration. Such pixels play a fallacious role in the registration process due to 
their high frequency content and pseudorandom contribution in the overall similarity 
measure and its derivatives. We show that excluding such pixels during the 
optimization considerably improves the registration result. This approach can reduce 
the average registration error up to several pixels and reduce the number of iterations 
down to one-third of the current implementations. 

1 Introduction 
Image registration [1, 2] is the process of finding a correspondence that maximizes a 
similarity measure between two or more deformed images. Elastic image registration, 
which handles warped deformations, is usually addressed as either a parametric modelling 
problem, based on B-splines [3, 4], or solving the Euler-Lagrange partial differential 
equation using numerical methods [5]. The sum of squared differences (SSD) and mutual 
information (MI) are the most common similarity measures in use. The optimization 
methods are mostly a modified version of the Newton or the Gradient-Descent approaches. 
Recently, there has been more effort in evaluating registration results [6, 7]. 

Registration of microscope scans, especially simultaneously acquired low-contrast 
fluorescent microscopy images, has received little attention thus far. Recent confocal 
imaging techniques have been developed to utilise a per-pixel weighted subtraction on a 
pair of simultaneously acquired images. It is therefore necessary to ensure that the images 
are successfully registered before this processing step. Čapek et al. [8] expand the method 
of [3] in order to register 3-D eight-bit high-contrast confocal images. For low contrast 
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microscopy images, the difference between data and background pixels is low. Therefore, 
the background pixels have a larger contribution to the overall similarity measure 
calculation. Such pixels can mislead the optimization process. Observations show that not 
only background pixels, but also some low-intensity data pixels can have a negative rather 
than positive effect on the optimization process. In addition, low-contrast images contain 
more high frequency components that cause greater sensitivity to interpolation artefacts 
[9]. In other words, because interpolation removes some details of the source image, it 
makes the similarity calculation inaccurate. So there is a higher chance of incorrect 
optimization. To the best of the authors’ knowledge, such problems with low contrast 
images are not addressed in the image registration literature. 

The optimization process is directed by the gradient of the similarity measure with 
respect to the B-spline coefficients. When there is not enough structure around a B-spline 
knot, the local similarity measures tend not to follow the same trend as the global value in 
approaching the optimal point, resulting in some coefficients being driven onto an 
incorrect path. This effect propagates through a number of surrounding knots which try to 
compensate for the fallacious ones. Therefore, there must be a dynamic mechanism for 
controlling the optimization process and excluding misleading pixels from the calculations. 
There are some landmarking approaches, such as pre-segmentation and contour detection, 
that only include certain pixels in the similarity calculation [10]. The success of such 
approaches depends on the accuracy of the landmarks. Regularization approaches, which 
try to preserve the objects in the image, are also used for improving image registration [3]. 

In this paper we present a novel mechanism that monitors the value of local similarity 
measure during registration and excludes pixels that mislead the optimization. We show 
that omitting such pixels during registration improves both accuracy and performance of 
image registration and produces faster convergence. In contrast to available methods, 
which treat the optimization as an input/output block, this approach constantly monitors 
what happens in each iteration step and prevents the deformation field from falling into 
incorrect local minima, which are sometimes irreversible. Section 2 describes B-spline 
based elastic registration and explains some of the problems with the low-contrast 
fluorescent microscopy images. Section 3 presents our novel algorithm. Experimental 
results are presented in section 4, which are then followed by the conclusion in section 5. 

2 Elastic registration of low contrast images 
In this section we describe B-spline based image registration. We also describe some 
drawbacks of using this approach with low-contrast microscopy images. 

2.1 B-spline based image registration for two images 

Consider two images ( , )tI x y  and ( , )sI x y , denoted target and source respectively, which 

are functions defined as mappings from the regions of interest 2
tΩ ⊂ ℤ  and 2

sΩ ⊂ ℤ  to 

the intensity domain ℝ . Image registration aims at finding a transformation function 
2 2( , ) :x y →T ℝ ℝ  from the coordinates of tI  to those of sI . T  can be modelled as a 

combination of an affine and an elastic transformation. In this paper we only consider the 
latter, which can be modelled using the piecewise cubic B-spline basis functions as in 
equation (1):  
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In this equation, 3β  is a third-order B-spline basis function, 
x
s  and 

y
s  control the 

image resolution in the multiresolution registration framework, and 1, ,k lc  and 2, ,k lc  are the 

set of coefficients to be optimized. Many different implementations of the B-spline based 
image registration have been developed. In this paper we use the same implementation as 
the one presented in [11] and [12]. Preliminary experiments show that mutual information 
is more sensitive to interpolation artefacts when applied to sixteen-bit low contrast 
microscope images. This is because of the sparseness of occupied bins in the joint 
histogram. Therefore we use the average sum of squared differences (SSD) as the 
similarity measure which is defined in equation (2). 

 [ ]{ }2

( , )

1
( , ) ( , )t s

x y

SSD I x y I x y
N ∈ΩΩ

= −∑ T  (2) 

Where { }( , ) : ( , )t sx y x yΩ = ∈Ω ∈ΩT  is a common mask between the two images and 

NΩ  is the number of pixels in the common mask.  

2.2 Problems of using SSD for low-intensity images 

SSD is used widely in image registration as it is easy to calculate, as are its derivatives. 
This makes it suitable for using with a broad range of interpolation and optimization 
algorithms. In low-contrast fluorescent microscopy images, the SNR level is low and the 
SSD value of background pixels is comparable to that of the data regions. Therefore, SSD 
of the background pixels will negatively affect the calculation of the overall SSD. In 
addition, using SSD as a similarity measure works best when the intensity range is the 
same for the source and target images. For high-contrast images, when the intensity ranges 
are different, adjusting the contrast of the images is a proper solution. In low-contrast 
microscopy images the intensity range is different, but because of the low SNR level, 
contrast adjustment enhances the background pixels too, which again has a negative effect 
on SSD calculation. For such images, the similarity measure, SSD, should only be 
calculated for those pixels in regions of well-defined data structure. In other words, we 
must exclude some of the pixels from the SSD calculation. Figure 2(c) is a good example 
of an image with valuable structure on small regions and background (pseudorandom 
noise) on all other regions. The B-spline based registration operates on local image 
regions, hence, in areas which lack structure, the algorithm will be misled. We can 
generalize this to the fact that, a perfect registration does not necessarily mean the 
minimization of the local SSD for all local regions (patches) in the image. Hub et al. [13] 
propose a method for evaluating image registration which assumes that the local values of 
SSD are also minimized for a good registration. We observed several low-contrast 
microscopy images which do not follow this assumption. For images like that of Figure 
2(c), segmentation may seem an easy solution. However, registration is usually a pre-
processing step and it is not desirable to have a segmentation step prior to registration. In 
addition, Figure 2(c) is an easy segmentation problem. As we will see later in this paper, 
the images may come in much more sophisticated topologies and intensities, making 
segmentation a separate challenging problem. 
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2.3 Patch space analysis 

Before we describe our methodology, we need to define the patch space since the local 
measurements are calculated over patches. For each coordinate ( , )x y ∈Ω  in the image I , 

a patch ( , )
I

x yP  can be defined as the set of all pixels in a square of size p p×  centred at 

( , )x y  where 2 1p q= +  is an odd number. We can present the patch as a vector of size 
2
p  in the 2 2p +  dimensional space of patches Γ , where the two additional dimensions 

represent the x  and y  coordinates [14]:  

 [ ]( , ) ( , ),..., ( , )I

x y I x q y q I x q y q− − + +=P  (3) 

3 Registration based on fluctuations of the local SSD 
This section presents our novel algorithm for improving the B-spline based image 
registration. We analyse the behaviour of local SSD and describe how to use the insights 
gained to develop a faster and more robust image registration technique. In B-spline based 
image registration, the B-spline grid is deformed in the direction of the gradient of the SSD 
until the SSD is minimized. For a high contrast image, we expect that the SSD value of the 
local patches also converge to a minimum. As mentioned before, not all patches in low 
intensity microscopy images follow the same trend. In particular, the SSD of some patches 
shows a fluctuating behaviour. In other words, the SSD of a patch may increase and 
decrease in consecutive optimization iterations. There are different reasons for this 
behaviour: 

1. Patches in the background regions show fluctuations in all iterations because 
calculating the SSD of such patches is equivalent to comparing two patches of 
random noise. 

2. During the optimization, the data pixels in the source image find their perfect 
match coordinate in the target image. Not all data pixels are registered at the same 
time, but some converge to the optimal point quicker. When a pixel is registered, 
it starts showing fluctuations in the local SSD around the optimal point. 

As mentioned before, for high contrast images, the SSD component due to the above 
fluctuations does not contribute significantly to the global SSD and its gradient. However, 
in low contrast microscopy images this component can drag the optimization into a wrong 
path. Therefore, we need a mechanism to exclude such misleading values. Our novel 
algorithm uses this behaviour to improve elastic registration as follows. 

For each pixel ( , )t t tx y ∈Ω  in the target image tI  with the corresponding patch 

,( , )
I

t x yP , the local SSD is defined as in equation (4):  

 [ ]{ }2

2

1
( , ) ( , )

t t

t t

x q y q

t s

x x q y y q

SSD I x y I x y
p

+ +

= − = −

= −∑ ∑ TP,t  (4) 

Because the optimization process is performed over time, we define the three 
dimensional space of SSD values Ζ . The members of Ζ  are the local SSD value for the 

patches ,( , )
I

t x yP  at iteration steps ζ , where 1,2,3,...Mζ =  represents the iteration number, 

with M  representing the final optimization iteration. The value of M  varies depending on 



ABBASPOUR, MILLER, GRIBBEN: IMPROVED ELASTIC REGISTRATION 5 
 

the images and the algorithm in use. For each pixel ( , )t tx y  and each iteration step ζ  we 

define a stack of size m  of the most recent SSD values. This forms a two dimensional 

space ζΛ  of vectors , ,( , )t x yζλ  of length m , where , ,( , )t x yζλ  is defined as in equation (5). 

 , ,( , ) , 1, 1,, ,...,t x y t t m tSSD SSD SSDζ ζ ζ ζλ − − + =  P, P, P,  (5) 

The discrete time derivative of , ,( , )t x yζλ  is equal to:  

 , ,( , ) , ,( , ) 1, ,( , ) 2, ,( , ), ,...,t x y t x y t x y m t x yD d d dζ ζ ζ ζλ λ λ λ− − + =    (6) 

Where:  

 , ,( , ) , 1,k t x y k t k td SSD SSDζ ζ ζλ − − − −= −P, P, ,    1k m≤ −  (7) 

If the number of consecutive sign changes in , ,( , )t x yD ζλ  is more than a certain value, 

which we call µ , the algorithm excludes the pixel ( , )t tx y  from further SSD calculation. 

For example, assume two pixels 1 1( , )x y  and 2 2( , )x y , with 6m =  and: 

 
( ) [ ]
( ) [ ]

1 1

2 2

,( , )

,( , )

, , , ,

, , , ,

x y

x y

sign D

sign D

ζ

ζ

λ

λ

= − + − + −

= + + − + −





 (8) 

If 3µ =  for example, we exclude 2 2( , )x y  from further SSD calculation, but include 

1 1( , )x y . When too many of the pixels are excluded from the optimization process, it is not 

suitable to continue the optimization because registration based on the remainder of the 
pixels is not reliable. We stop the optimization when fifty percent of the pixels are 
excluded. In section 4.3 we explain how we choose the important parameters. 

4 Results 

4.1 Test data 

The proposed algorithm is applied to different microscopy images. The images are pairs of 
simultaneously acquired low contrast fluorescent microscopy slides which are called “left” 
and “right”. The resolution of images is 1µm per pixel and the images are gray scale 
sixteen bit TIFF files of size 1040×685 pixels. The range of intensity for these images is 
between few hundreds and few thousands, which is small comparing to the maximum 
possible value in sixteen bit range. Figure 1 shows an example of low contrast microscope 
image pairs which is obtained from mouse kidney. Three pixels are highlighted in Figure 
1(a). These pixels are analysed in section 4.5. Figure 2 shows six different sample images 
with different quality, contrast and topology. This figure only shows the “left” images. We 
call these images (a) to (f) for simplicity. 

4.2 Methodology 

In order to evaluate our method, we need a measure that can compare the registration result 
to a ground truth. We use the average registration error defined by Klein et al. [6] for 
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comparing the registration result with a reference transform. The displacement error of a 
pixel ( , )x y  is defined as follows. If the result of registration is a vector field ( , )reg x yu  for 

each pixel in the source image, the displacement error is the difference between this vector 
and that of the reference transformation ( , )ref x yu , which is defined as: 

( , ) ( , ) ( , )reg refD x y x y x y= −u u . When we evaluate the registration result for a patch 

( , )
I

x yP  (or the entire image) with a region of interest Ω , the average displacement error is 

defined as in equation (9):  

 
( , )

( , )

1
( ) ( , ) ( , )I

x y
x y

reg refD x y x y
N ∈ΩΩ

= −Ω ∑ u u
P

 (9) 

 

    
 (a)  (b)  

Figure 1: A sample image pair from mouse kidney: (a) Left image; (b) Right image. 

This value is called the warping index in [3]. For obtaining the ground truth we apply a 
calibration approach based on using a high contrast reference pattern. 

 

      
  

(a)  (b) (c) (d) (e)  (f) 
Figure 2: Image samples that are used in registration experiments. 

4.3 Investigation into patch size, stack size and µ on performance 

In this section we study the effect of changing the main parameters, which are the patch 
size, stack size and µ. We firstly predict an appropriate range for these parameters. Then 
we present the numerical experimental results to find the optimal values. The first 
important parameter is the patch size. For choosing a proper patch size, we notice that the 
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fluctuations occur at coordinates where the gradient is not large and the optimization is not 
steep. Such smooth displacements in the B-spline knots can only cause deformations of a 
few pixels (one or two). Therefore, the patch size must be chosen in a way that can show 
enough variations with respect to such deformations. If the patch size is large, its SSD 
value would not show the expected fluctuations. Ideally, it is desirable to follow the SSD 
behaviour for individual pixels, i.e. 0q =  in equation (4). However, the SSD of individual 

pixels can be sensitive to noise and interpolation artefacts. Values between 1q =  and 

4q =  are expected to work better. B-spline based image registration is usually 

implemented in a multiresolution scheme, meaning that it starts with a small grid and a 
sub-sampled copy of the image and increases the grid and image resolution gradually [11]. 
This approach is called the pyramid approach, because the algorithm is applied to the grid 
and image in different resolutions in a pyramid form. In our algorithm we follow the 
multiresolution approach. Therefore, we need to increase the patch size with the increase in 
image pyramid level. The pyramid size in [11] increases with powers of two. However, if 
we use the same scaling for the patch size, the patch size for lower pyramid levels will be 
dramatically large. Instead, we prefer a linear increase in the patch size, meaning that, 
instead of using p, p×21, p×22, ... we use p in the top of the pyramid and 2p, 3p, etc. for the 
next levels. The other important parameters are m and µ, which are the size of the SSD 
stack and the threshold of fluctuations in the local SSD for accepting a pixel. It is obvious 
that 3m ≥  and 2mµ ≤ − . As mentioned before, the SSD in low contrast images is very 

sensitive to interpolation artefacts due to the presence of high frequency components. In 
other words, the fluctuation is a combination of the image content and the interpolation 
artefacts. Therefore, choosing a low value for m can increase the risk of ignoring good 
pixels. Instead, choosing a larger stack size is safer. As a raw estimate we assume that half 
of the fluctuations are caused by artefacts and choose the stack size to be six.  

 

   
(a)  (b) (c) 

   
(d)  (e) (f) 

Figure 3: Average registration error as a function of m and p for different values of µ: (a) 
Figure 1 with µ=0; (b) Figure 1 with µ=2; (c) Figure 1 with µ=4; (d) Figure 2(e) with µ=0; 
(e) Figure 2(e) with µ=2; (f) Figure 2(e) with µ=4. 

Figure 3 shows the value of average registration error for the two images in Figure 1 
and Figure 2(e) for µ=0, µ=2 and µ=4. When µ is small (zero or one), the value of error is 
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large for small stack size, which means a poor registration. The error is worse than the 
current approach which uses all pixels. This conforms to our prediction about the value of 
µ. A small µ means that we are excluding many of the useful pixels, which are probably 
fluctuating only because of the interpolation artefacts. For µ=2 the error seem to be more 
independent of µ. Figures 3(c) and 3(f) (µ=4) suggest that for a larger stack size, the error 
depends more on the difference between stack size and µ (m - µ) than the value of µ alone. 
Several experiments confirm that m=7 and µ=3 is a good combination. As we see in 
Figure 3, the error value is not much dependent on the patch size. However, increasing the 
patch size slightly reduces the error. Other experiments show that the error will increase 
considerably for 25p ≥ . In most experiments, the registration error converges to a 
minimum value. 

Figure 4 shows the number of iterations for the same experiment for the image in 
Figure 1. We see that for a small µ, the number of iterations is very small, which 
corresponds to poor error values. This means that the algorithm is stopped sooner than it is 
optimized, because many good quality pixels are excluded from SSD calculation. With 
larger values of µ, the number of iterations again depends more on the difference between 
stack size and µ. With a larger difference, the error is more trustable and the number of 
iterations is larger. The pattern of change in the error and number of iterations is similar for 
most of the images. 

4.4 Results of registration  

Now we analyse the behaviour of a few individual pixels to investigate how the 
fluctuations in the local SSD of individual pixels can affect the overall SSD calculation 
and optimization. We compare the results of our approach to those of a state of the art B-
spline based implementation and show how excluding the poor quality pixels can improve 
both quality and performance of registration. 

 

   
(a)  (b) (c) 

Figure 4: Number of iterations as a function of m and p for different values of µ: (a) Figure 
1 with µ=0; (b) Figure 1 with µ=2; (c) Figure 1 with µ=4. 

 
Figure 5(a) shows the normalized value of the SSD for the three pixels that are 

landmarked in Figure 1(a). Pixel number one is recognized as a good pixel using our 
algorithm, because its fluctuations are few and it lasts the excluding process until the final 
optimization iteration. Pixels two and three on the other hand, fail to stay in the 
optimization because of their fluctuating local SSD. As we see in Figure 5(a), the local 
SSD of the “good” pixel follows the minimization trend, while the two others do not 
converge. The trend of the local SSD for the good pixel is similar to that of the overall 
SSD in Figure 5(b). This figure shows the overall SSD value for both the image 
registration algorithm of [12] and our approach. In Figure 6 we show how the pixels are 



ABBASPOUR, MILLER, GRIBBEN: IMPROVED ELASTIC REGISTRATION 9 
 

excluded from the registration process. As mentioned before, after the first few iteration 
steps, the pixels that do not have enough image structure are excluded. These pixels 
usually belong to background regions, but they can belong to data regions as well. As the 
optimization goes on, more and more pixels are being masked from registration. Figure 
6(a) shows the first mask which is extracted after 7 iterations mask. Figure 6(b) shows an 
intermediate mask, after 28 steps. 
 

 
 (a)  (b)  
Figure 5: Local and overall SSD trend: (a) Normalized local SSD for the three pixels in 
Figure 1(a) before applying our approach; (b) overall SSD for the mouse kidney image of 
Figure 1 before and after excluding poor quality pixels. 

 

     
 (a)  (b)  

Figure 6: Registration mask after (a) 7 iterations; (b) 28 iterations. 

Our algorithm is developed as an improvement to the implementation of the B-spline 
based image registration [12]. Therefore, we compare it to our approach. We also compare 
our results to those of another approach [3, 15], which introduces  a consistent and 
regularized registration. Table 1 shows the average registration error for the images in 
Figure 1 and Figure 2. Table 2 shows the number of iteration steps in the same experiment. 
In these experiments, the Patch size p  is five, the stack size m  is seven and 3µ = . As we 
see in Table 1, in all experimental results the registration error improves. For images with 
less structure, the improvement is up to several pixels. At the same time, the number of 
iterations decreases considerably (Table 2) which means a faster convergence of the 
registration algorithm. As mentioned before, the reason for this result is that, many of the 
pixels, mainly belonging to the background but also pixels of the data regions do not 
provide a valuable contribution to the registration process. Instead, they cause unnecessary 
fluctuations in the value of the overall SSD and make the registration deviate from the 
correct optimization path. Examples of such pixels are presented in Figure 5(a). We solve 
this problem via a dynamic recognition and exclusion of such pixels. This helps the 
optimization algorithm converge faster. At the start of the algorithm, the most unreliable 
pixels are excluded. During optimization, more and more pixels converge to the optimal 
point so they must be excluded from further registration. One of the main approaches for 
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improving image registration is preserving the topology of the image via some 
regularization [3, 4] methods. As we see in Table 1 and Table 2, this method cannot 
improve the results for low-contrast confocal images because it only handles the regions 
with image structure and does not provide any solution for regions without enough 
structure. The same way, the consistent image registration [15] suffers from the same 
problem. 

 

Image sample Figure1 (a) (b) (c) (d) (e) (f) 

Poor pixels excluded 3.64 1.41 4.99 1.09 10.68 1.70 1.16 
All pixels included 6.20 0.87 5.44 1.33 15.72 2.06 1.84 
Consistent and regularized 6.02 6.49 5.24 0.83 29.07 2.15 1.59 

 

Table 1: Average registration error for images of Figure 1 and Figure 2 for three 
approaches: excluding poor quality pixels, using all pixels [12] and the consistent and 
regularized approach [3, 15]. 
 

Image sample Figure1 (a) (b) (c) (d) (e) (f) 

Poor pixels excluded 20 27 59 29 51 24 33 
All pixels included 68 41 54 36 106 65 54 

 

Table 2: Number of iterations for registering the images of Figure 1 and Figure 2 for two 
approaches: excluding poor quality pixels, using all pixels [12]. 

5 Conclusion 

We presented a new image registration approach that calculates the similarity measure 
and its gradients using only valuable pixels. Image registration algorithms usually calculate 
the similarity measure over the entire image, regardless of the importance of different 
pixels. In simultaneously acquired low-contrast fluorescent microscopy images, the value 
of similarity measure for background regions and poor quality pixels is comparable to that 
of the data regions. This effect can drag the optimization algorithm out of the correct path. 
Regularization based approaches suffer from the same problem when applied to low-
contrast images. Our method is not based on segmentation or landmarking in the image, 
but extracts and ignores the misleading pixels during the optimization. In contrast with the 
common methods, this approach does not treat the optimization task as an input-output 
block, but monitors it constantly. We presented the results of applying this algorithm to 
several low-contrast microscopy images and showed that the registration error is reduced 
up to several pixels. In addition, our method reduces the number of iterations down to one-
third of the original implementation in [12]. The future work may include more 
investigation of the effect of the parameters, taking a closer look at different values of local 
similarity measure and improving the mechanism by which the poor quality pixels are 
being excluded. We also need to present the error for the “good” pixels explicitly, which 
shows the strength of our approach much better.  
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