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Abstract

Most existing methods for template matching require computationally demanding
searches and may not be appropriate for matching multiple templates. We present a novel
real-time solution by matching a number of subtemplates with an input image, instead
of using the entire template. Each template class is first learned and depicted offline
as a set of wavelet-based directional band-pass filters, each of which allows only the
most salient wavelet frequencies (subtemplates) to pass. As a result, matching a template
becomes equivalent to the problem of filtering the wavelet transformed image using a set
of band-pass filters. Finally, the region with the highest response density after filtering is
considered as the detection. The computational complexity of this matching method is
1/50 of optimal correlation based SSD [5]and 1/10 of orthogonal Haar transform based
SSD [20]. Further, the use of subtemplates enables detection even in the presence of
skew and rotation. We present experimental results that demonstrate the capacity of our
system for detection with a total of 10 different logo classes in broadcast videos.

1 Introduction
In many computer vision applications we are interested in matching a template with a given
image to find the region of interest (ROI) that most closely matches the template in terms of
some similarity measurement. According to the way similarity measurements are performed,
such template matching methods can roughly be classified into two groups: 1) patch match-
ing schemes, such as the sum of absolute difference (SAD) [1], the sum of squared difference
(SSD) [5], or cross correlation (XCORR) [27], where the similarity measurement relies di-
rectly on pixel information from the patch of interest; and 2) feature matching schemes, such
as invariant features [3, 15] and bags of features [14, 16, 22, 24], where similarity measure-
ment relies on features describing the template and the frame.
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Patch matching methods are not robust, especially when noise, skew, or errors occur [25].
Further, they consume a large amount of time [21], because of expensive sliding window
search for calculating the similarity score over all possible locations. Several techniques
have been explored for accelerating such matching methods, including early rejections [27]
and correlation techniques [3, 5]. However, the computation cost could still be unaffordable
when the frame size is large. Typically other techniques, like frame difference, are used to
reduce the search space in applications.

Feature matching methods process the template and describe it with features [10, 17, 25],
which are ideally invariant to rotation, skew, noise etc. However in many cases, the use of
a more complicated model for similarity measurement results in higher computational cost.
Further, sliding window search is also a costly stage for such methods [14]. While there exist
known algorithms for fast search of object instances in an image using branch-and-bound
techniques [13], in our particular problem, methods of this type have two crucial limitations.
First, they require a large number of training samples for each class to learn robust classifiers.
Second, interest point detectors like SIFT [16] typically do not generate sufficient number of
feature points, because of the small size of the provided logo, large homogenous regions and
degradations.

Wavelets based approaches that we consider in this paper have been extensively used in
object detection and recognition. In [9], wavelet coefficients based image histograms are
collected in bins and are used for classifying logos. In [18], wavelet coefficients are directly
used for training pedestrian detectors. In [26], wavelet coefficients are selected to form
rotation-invariant features by using the angular-radial transform. However, matching logos
within frames using [9, 18, 26] still would require expensive window searching and thus are
not appropriate for real-time processing.

In our work, we propose a new matching method using the wavelet based band-pass filter-
s (WBPFs). Instead of using direct distance measurement, which requires expensive window
search, the similarity is measured in an indirect way involving two stages. In the offline tem-
plate processing stage, a template is automatically described using a set of three directional
WBPFs, where only salient wavelet frequency components are allowed to pass. In the online
frame processing stage, a frame is transformed to the wavelet domain and its sub-bands are
filtered with respect to the corresponding template WBPFs. Finally, the detection is made at
the region of densest responses under spatial constraints [8, 15]. We show that the proposed
template matching system has a very low computational cost, which is 50 times faster than
the correlation based SSD [5] and 10 times faster than the orthogonal Haar transform (OHT)
based SSD [20]. Further, the proposed method does not trade-off accuracy, since the use
of subtemplate information makes it robust to skew and camera view change. Experimental
results demonstrate our method for real-time logo detection in broadcast videos.

2 Framework Overview and Wavelet Processing

2.1 Framework Overview

Figure 1 presents an overview of the matching framework using WBPFs. In the offline
template processing stage, each template class is learned and described as a set of WBPFs,
which only allows the frequency band containing salient subtemplate frequency components
to pass. In the online frame processing stage, the frame is also transformed to the wavelet

Approved for public release; distribution unlimited

Citation
Citation
{Taylor and Drummond} 2009

Citation
Citation
{Quan and Suya} 2008

Citation
Citation
{Wei and Lai} 2008

Citation
Citation
{Essannouni and Aboutajdine} 2010

Citation
Citation
{Essannouni, Thami, Aboutajdine, and Salam} 2007{}

Citation
Citation
{Hinterstoisser, Kutter, Navab, Fua, and Lepetit} 2009

Citation
Citation
{Natarajan and Nevatia} 2008

Citation
Citation
{Taylor and Drummond} 2009

Citation
Citation
{Lee and Soatto} 2011

Citation
Citation
{Lampert, Blaschko, and Hofmann} 2008

Citation
Citation
{Lowe} 2004

Citation
Citation
{Hesson and Androutsos} 2008

Citation
Citation
{Oren, Papageorgiou, Sinha, Osuna, and Poggio} 1997

Citation
Citation
{Tsai and Chiang} 2002

Citation
Citation
{Hesson and Androutsos} 2008

Citation
Citation
{Oren, Papageorgiou, Sinha, Osuna, and Poggio} 1997

Citation
Citation
{Tsai and Chiang} 2002

Citation
Citation
{Hasan and Hogg} 2010

Citation
Citation
{Li, Kim, Huang, and He} 2010

Citation
Citation
{Essannouni, Thami, Aboutajdine, and Salam} 2007{}

Citation
Citation
{Ouyang, Zhang, and Cham} 2010



WU et al.: WAVELET BAND-PASS FILTERS FOR TEMPLATE MATCHING 3

(a) Offline template processing

(b) Online frame processing

Figure 1: The proposed WBPFs multiple template matching framework

domain and it is filtered by WBPFs with respect to all template classes. For each template
class, the filtered results are combined and analyzed to predict the region of interest (ROI).
The offline template processing and the online frame processing are discussed in detail in
future sections.

2.2 Why WBPFs works
We first present the general idea of template matching using the density response of subtem-
plates. Instead of treating all pixels in a template evenly, we discard non-salient ones and
match based on the salient subtemplates. If we assume that the wavelet filter w is of length
l, we transform the template to wavelet domain by convolving the wavelet filter coefficients
with the template signal, as shown in Eqn. (1). More specifically, each coefficient in W (t) is
actually a convolution between a stripe of template pixels and the wavelet filter coefficients
[6] by the definition of the wavelet transform.{

W (t) = t ∗h
W (t)[i] = ∑

l
j=1 t[i− j] ·h[ j] (1)

Therefore, the wavelet transform expresses stripes of pixels (subtemplates) in the given tem-
plate as coefficients. It is clear that not all subtemplates are salient and thus the selection
stage should be performed. Using the alternative interpretation of wavelet coefficients in
images [6], wavelet sub-bands can be considered as the high frequency response of a time
domain signal. Therefore, the selection of salient templates is equivalent to choosing the
most salient frequency responses in W (t), which is well-known as power spectrum analysis
in signal processing [6]. Consequently, a band-pass filter is then obtained, which covers the
frequency band of all salient frequency components. Three wavelet sub-bands then imply
three ways of obtaining subtemplates. In other words, the same template is described by
three WBPFs. In online frame processing, the frame is transformed and then filtered by the
template WBPFs. After filtering, only locations containing salient frequency components in
the frame have responses. Further, a location is rejected unless it has responses in all three
directions. Finally, the region with densest response is considered as the ROI.

2.3 Wavelet Transform and Related Issues
Noise is a crucial issue while processing real world data. To address this, the wavelet pro-
cessing in both the offline template processing and the online frame processing in Figure 1,
has the structure shown in Figure 2. It is worthwhile to note that in ’Wavelet Processing’,
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Figure 2: The internal structure of ’Wavelet Processing’

there are two major differences from a normal wavelet transform. First, the pre-processing
stage of ’Wavelet SureShrink’ [2] is applied to denoise the image. Second, no downsampling
stage is used. The pre-processing is included since the image might be noisy (some of our
data are converted from analog television broadcasts). The down-sampling stage is not in-
cluded since we might lose significant matching information, especially when a spatial shift
exists [23].

3 Offline Template Processing

3.1 Overview
The offline template processing is the core of the matching system, and provides the required
band-pass filters for the online matching process. Figure 3 shows the detailed internal struc-
tures of this processing. The key challenge while using WBPFs for template matching is

Figure 3: Offline template processing

the selection of cut-off frequencies. Ideally, a set of WBPFs should have the ability to ac-
cept template-like regions, and reject non-template-like regions. Thus, it is desirable to find
the most representative wavelet coefficients for a template class. These coefficients should
satisfy the following conditions:
• They should be distinctive from ’background’ coefficients
• The number of representative coefficients should not be too large or too small.
The first condition eliminates ’background’ coefficients, which appear widely in differ-

ent template classes and thus are not representative. The second condition is empirical but
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important, because the ’foreground’ coefficients of extremely high values with small popu-
lations might be caused by random noise and thus are not representative; the ’foreground’
coefficients of low values with large populations are from sidebands while convolving ’rep-
resentative’ peaks (See Figure 3-stage 2 ’Directional Wavelet Processing’). The ’Optimum
Global Thresholding’ in Figure 3 helps eliminate ’background’ coefficients and thus simpli-
fies the problem. Further, the ’PSD Analyzer’ finds ’foreground’ coefficients with a moderate
population and thus finds the corresponding cut-off frequencies.

3.2 Optimum Global Thresholding
Consider k samples from a template class given as t1, t2,· · · , tk. Denote their corresponding
wavelet coefficients along one direction as T1, T2,· · · , Tk. Let Hi be the ith wavelet coefficient
histogram of |Ti|. In Figure 3-stage 3 ’Optimum Global Thresholding’, a given threshold
r (marked as the red vertical line) separates the foreground and background coefficients on
its right and left, respectively. Alternatively, for a given threshold r, the foreground and
background coefficients in Ti are defined in Eqn. (2), where Ni = {1,2, · · · ,ni} and ni is the
number of coefficients in Ti.{

Sample Foreground Class: F i(r) = { j : |Ti[ j]| ≥ r and j ∈ Ni}
Sample Background Class: Bi(r) = { j : |Ti[ j]| ≤ r and j ∈ Ni}

(2)

Then the foreground class and background class for this template are defined in Eqn. (3).{
Template Foreground Class: F(r) = {F1(r),F2(r), · · · ,Fk(r)}
Template Background Class: B(r) = {B1(r),B2(r), · · · ,Bk(r)}

(3)

As a result, the objective of Optimum Global Thresholding is to find an integer threshold
r such that the inter-class variance is maximized. One solution is Otsu’s method [19], which
minimizes the intra-class variance. For k samples, the optimal threshold r∗ is obtained by
minimizing Eqn. (4):

r∗ = arg min
r∈[1,M]

ωF(r)σ
2
F(r)+ωB(r)σ

2
B(r) (4)

where, ωF(r)/ωB(r) and σF(r)/σB(r) denote the numbers of coefficients and the standard de-
viation of class F(r) /B(r), respectively; and M is the largest coefficient among k template
samples, i.e. M = max{|Ti[ j]| : i ∈ {1,2, ...k}and j ∈ Ni}. Consequently, the estimated fore-
ground histogram HF (see ’Estimated Foreground Histogram’ in Figure 3) is obtained by
taking into account all sample foreground histograms as defined in Eqn. (5):

HF [ j] =
{

0, if j < r∗

∑
k
i=1 Hi[ j]/Ni, if j ≥ r∗

(5)

3.3 PSD Analyzer
’Optimum Global Thresholding’ selects the ’foreground coefficients’. The last step is to
select a number of representative coefficients. Heuristically, coefficients with large values
are preferred. However, the number of the coefficients at this value also matters. Therefore,
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it is natural to use the power spectrum density (PSD) analysis [6]. The raw PSD function
praw is obtained by calculating the power contributions of coefficients. The PSD function p
(see Figure 3-stage 4 ’PSD Analyzer’) is obtained by normalizing praw.

praw[ j] = j2 ·HF [ j] (6)

p[ j] = praw[ j]/
M

∑
i=1

praw[i] (7)

P[ j] =
j

∑
i=1

p[i] (8)

Since ∑
M
j=1 p[ j] = 1 and p[ j] ≥ 0, the PSD function p is a probability density function.

Correspondingly, its cumulative density function (CDF) P is defined in Eqn. (8). The cut-off
frequencies are searched by using the following algorithm:

Algorithm 1 Searching cut-off frequencies for a template class
Input: the class PSD function p and its CDF function P
Output: the cut-off frequency pair cL and cU

Step 1. Find median location j∗, such that j∗ = argmin j∈1,2,··· ,M |P[ j]−0.5|
Step 2. Set cL = cU = j∗

Step 3. Compare Ple f t = P[cL] with Pright = 1−P[cU −1]
if Ple f t > Pright , let cL = cL−1; otherwise, cU = cU +1

Step 4. Repeat step 3, until P[cU ]−P[cL−1]≥ 50%, i.e. at least 50% of power is covered

As a result, the cut-off frequencies cL and cU are obtained and stored for its corresponding
template class as Figure 3 shows. Given a set of template samples belonging to the same
class, repeat this process for corresponding wavelet coefficients along all three directions.
Eventually, we obtain a set of three WBPFs for describing this template class.

4 Online Frame Processing

4.1 Overview
The flowchart of the online frame processing is given in Figure 4. For a given frame f ,
directional W H( f ), WV ( f ) and W D( f ) are obtained as the wavelet transform of f along
the horizontal, vertical and diagonal directions, respectively. Later on, W H( f ), WV ( f ) and
W D( f ) are filtered by the WBPFs corresponding to all template classes as stage 3 ’WBPFs
Filtering’ in Figure 4 shows.

4.2 Matching Detection
Let RH

i ( f ), RV
i ( f ) and RD

i ( f ) denote the filtered results of frame f with respect to the ith tem-
plate class along horizontal, vertical and diagonal directions respectively. Then the filtered
result along direction X , RX

i ( f ), is defined as follows, where X ∈ {H,V,D}.

RX
i ( f )[ j,k] =

{
1, if W X ( f )[ j,k] ∈WBPFX

i
0, otherwise (9)
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Figure 4: Online frame processing (Multiple template matching)

Di( f )[ j,k] =
{

1, if RH
i ( f )[ j,k] = RV

i ( f )[ j,k] = RD
i ( f )[ j,k]

0, otherwise (10)

The sub-band filtering is equivalent to selecting locations that are similar to the sub-
templates. These filtered results contain not only locations with actual logos but also false
alarms. Fortunately, a great number of false alarms can be immediately eliminated by using
the simple voting rule that each directional WBPF has the veto to reject a coefficient location.
In other words, a coefficient location will not be accepted for a template t unless all three
WBPFs agree as Eqn. (10) shows. Once Di( f ) is obtained, the density map at scale s is cal-
culated as shown in Eqn. (11) by enumerating the number of responses in its neighborhood
with respect to the corresponding rectangular template of width ai and height bi.

ρ
s
i ( f )[ j,k] =

sbi/2

∑
y=−sbi/2

sai/2

∑
x=−sai/2

Di( f )[ j+ x,k+ y] (11)

According to the spatial randomness theorems [11], if the response density within a
region of area Ω is λ , the appearance of v responses in a region of area A has the Poisson
distribution given in Eqn. (12), when responses are uniformly distributed over Ω.

Pr(ρs
i ( f )[ j,k] = v|λ ) = (λA)v

v!
exp(−λA) (12)

λ = ∑
j,k
Di( f )[ j,k]/Ω (13)

In our case, A is the area of the template at scale s, i.e. A = s2aibi, and Ω is the area of the
frame. Then the normalized density score with respect to the spatially, uniformly distributed
response is shown in Eqn. (14).

ρs
i ( f )[ j,k] = 1/Pr(ρs

i ( f )[ j,k]|λ ) (14)

The detection scale and location (s∗, j∗,k∗) are chosen such that the maximum of ρs
i ( f )[ j,k]

is achieved, i.e.
(s∗, j∗,k∗) = argmax

s, j,k
ρs

i ( f )[ j,k] (15)
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8 WU et al.: WAVELET BAND-PASS FILTERS FOR TEMPLATE MATCHING

Finally, unless this maximum value is greater than a threshold T h, it is not considered as
detection. Empirically, we found T h = Ω, the area of the frame, to give good performance.
This in effect enforces the condition that

Pr(ρs∗
i ( f )[ j∗,k∗]|λ )≤ 1/Ω (16)

i.e. the observed response is much rarer than the probability of a random location in the frame
having the correct match. Figure 5 shows the template and the corresponding intermediate
results for stage 4 ’Matching Detection’ in Figure 4.

t RH ( f ) RV ( f ) RD( f ) D( f )

ρ20%( f ) ρ40%( f ) ρ60%( f ) ρ80%( f ) ρ100%( f )

Figure 5: Intermediate results of ’Matching Detection’. First row: template and directional
filtered results. Second row: normalized response density score for different template scales
(brighter colors stand for higher scores).

4.3 Theoretical Algorithm Complexity

Assume the frame size is M×M and the used wavelet filters are of length l (M >> l). Then
matching k templates within one frame requires one wavelet transform with denoising for
the frame image, 3k times band-pass filtering and additional 3k times voting. Table 1 shows
the theoretical complexity of WBPFs for matching k templates.

Complexity\Operation Wavelet Transform Wavelet Denoisng WBPFs Filtering Voting Row Sum
Addition/Multiplication M2[7] 3M2 0 0 4M2

Comparison 0 3M2 3kM2 3kM2 (3+6k)M2

Column Sum M2 6M2 3kM2 3kM2 Total: (7+6k)M2

Table 1: Theoretical WBPFs complexity (matching k templates in one frame)

Note that the complexity of (7+6k)M2 can be largely reduced by using heuristic pruning
techniques. For example, the band-pass filter can be accelerated using a hierarchical order,
from the largest band-width to the smallest. Further, the band-pass filtered results are sparse
and binary, and thus allow fast algorithms for matching detection.

Algorithm\Reported Complexity One Template k Templates (when k is large )
Optimal SSD Correlation [5] 3CSR f f t ∼ (22.656 · log2 M)kM2

M4 SSD Correlation [3] 5CSR f f t ∼ (37.76 · log2 M)kM2

OHT SSD [20] (4+7log4 u)M2 ∼ (4+7log4 u)kM2

WBPFs 13M2 ∼ 6kM2

* CSR f f t ≈ 0.944 · (4M2 log2 M2−6M2−8) [12]
**M is the frame size, u is the number of Haar bases and l is the length of wavelet filter

Table 2: Theoretical arithmetic complexity comparison for fast matching algorithms
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Table 2 shows the arithmetic complexity comparison table for recent fast matching algo-
rithms. Table 3 extends the comparison table in [3]. When the frame size is of 512× 512
and template size is of 64×64, even for the one template and one frame case, WBPFs have
only 2% of the computation for optimal SSD Correlation [5], which is the fastest of the al-
gorithms listed in [3] and 10% of OHT SSD [20]. WBPFs produce even greater speed-up
while matching multiple templates.

Template size 32×32 Template size 64×64
Method\Frame size 64×64 128×128 256×256 128×128 256×256 512×512

SSD Full Search 4,460,544 38,539,264 207,360,000 69,222,400 610,287,610 3,303,030,780
SSD Correlatio[5] 500,574 2,373,798 10,980,849 2,373,798 10,980,849 49,865,529

SAD Full Search 3,345,408 28,904,448 155,520,000 51,916,800 457,715,710 2,477,273,080
SAD Correlation[4] 834,290 3,956,330 18,301,415 3,956,330 18,301,415 83,109,215

M4 Full Search 6,690,816 57,808,896 311,040,000 103,833,600 915,431,420 4,954,546,170
M4 Correlation[3] 834,292 3,956,334 18,301,416 3,956,330 18,301,415 83,109,215

OHT SSD[20] 159,744 638,976 2,555,904 753,664 3,014,656 1,2058,624
WBPFs 53248 212,992 479,232 212,992 479,232 1,331,200

Table 3: Comparison of number of computations required when matching one template with
one frame at one scale

5 Experiments

We tested our approach for detecting 10 logo classes (one sample for each class) from broad-
cast news videos. For each logo class, 5 frames containing this logo were used as the test
set. Figure 6 shows the template set and sample frames in the test set. We compared our
approach with SSD [5] and M4 [3]. The method SSD Correlation [5] is selected for its sim-
plicity of realization and the method of OHT SSD [20] produces equivalent matches to other
SSD algorithms. Both the accuracy and speed are evaluated. Experiments were done on a
Windows XP system and MATLAB r2010a environment with 3GB memory and Intel Core2
2.6GHz CPU.

Figure 6: Experiment logo data. Ten template classes are shown on the left half. Frames are
directly pulled from broadcast videos (Note: logos might be skewed or scaled).

Figure 7 shows some results after matching. It is clear that the WBPFs system has
the capacity to deal with skewed logos. This is because image data is of high information
redundancy, whose neighbor pixels are closely correlated, and thus the wavelet coefficients
also change within a small interval when a logo in the frame is slightly skewed. As a result,
these comparable coefficients lead to match a skewed logo within a frame. We also noticed
that the WBPFs system tends to return multiple detections when the logo size is small. This
is because the wavelet coefficient histogram tends to have fewer coefficients and leads to a
rougher estimator of the template class.
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Figure 7: Template matching results using the proposed WBPFs system. The system is able
to deal with skewed logos (see ’Windex’ column), noisy logos (see ’Sprint’ column), and
scaled logos (see ’Sprint’ column).

Table 4 shows the performance of SSD correlation, M4 and WBPFs on the user provided
logo set shown in Figure 6. We consider a ’hit’, if the marked ground truth region overlaps
at least 50% of the detection region. It is clear that WBPFs outperforms fast algorithms SSD
Correlation and M4 Correlation in both accuracy and speed.

Accuracy Matching Time (sec)
Methods\Items Precision Recall F-measure 1 template per frame 10 templates per frame Total

SSD[5, 20] 0.4541 0.5600 0.5015 2.0974± 0.04071 20.9742±0.40712 1055.11
M4 [3] 0.3901 0.5600 0.4598 3.8174±0.07411 38.1744±0.74114 1908.72

WBPFs 0.5322 0.9000 0.6689 0.3594±0.00324 0.5763±0.00722 28.82

Table 4: Performance of SSD Correlation, M4 and WBPFs on the user-provided logo set

6 Conclusions
We have proposed a new template matching framework where instead of matching an entire
template within a frame, subtemplates are used. We generate a great number of subtem-
plates by using the wavelet transform along different directions. Then salient subtemplates
are selected and further expressed as band-pass filters in the wavelet domain. As a result,
matching a template within a frame becomes a problem of filtering the frame in the wavelet
domain. Locations with responses after filtering the frame are those that match the subtem-
plates. Finally, the corresponding response density is calculated and the scale and location
of the detection is determined by maximizing the normalized density score in Eqn. (14).

The proposed method has very low complexity and only requires one time wavelet trans-
form, a finite amount of filtering, and user defined scale searches. Experimental results show
that the proposed matching system is robust to skew, rotation, viewpoint change, scaling, and
noise. In general, less than 500 locations survive after filtering a frame of size 528×704 with
respect to all three WBPFs. Therefore, both response density calculations and scale search-
es can be done quickly. The proposed system can also work as a pre-processing step for
efficiently reducing the search space and thus makes it possible to use expensive matching
algorithms for real-time processing.
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