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Abstract

In this paper we show how to improve the detection of shadows in natural scenes
using a novel combination of colour and illumination features. Detecting shadows is
useful because they provide information about both light sources and the shapes of ob-
jects thereby illuminated. Recent shadow detection methods use supervised machine
learning techniques with input from colour and texture features extracted directly from
the original images (e.g. Lalonde et al. ECCV 2010, Zhu et al. CVPR 2010). It seems
sensible to augment these with estimates of scene illumination, as can be obtained with
an intrinsic image extraction algorithm. Intrinsic image extraction separates the illumina-
tion and reflectance components in a scene, and the resulting illumination maps contain
robust intensity change features at shadow boundaries. In this paper, we make two main
contributions. First we improve upon existing methods for extracting illumination maps.
Second we show how to use these illumination maps together with colour segmentation
to extend the Lalonde’s approach to shadow detection. Illumination maps are extracted
using a steerable filter framework based on global and local correlations in low and high
frequency bands respectively. The illumination and colour features so extracted are then
input to a decision tree trained to detect shadow edges using AdaBoost. We tested vari-
ations of our proposed approach on two public databases of natural scenes. This study
showed that our approach improves on that of Lalonde both in terms of sensitivity to
shadow edges and rejection of false positives. Following Lalonde we show that our
detection results are further improved by imposing an edge continuity constraint via a
conditional random field (CRF) model.

1 Introduction

Shadows are unavoidable in natural images. They are useful because they can provide in-
formation about both the light source [10, 17] and the shape of objects [14, 15], but they
also degrade the performance of algorithms for tasks such as segmentation, object detection,
tracking, and shape reconstruction. In all of these cases it is beneficial to detect shadows in
images. Shadow detection is still an open problem. In this paper we improve on existing
supervised learning methods for shadow detection by incorporating an illumination map —
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extracted using a correlation-based approach we developed recently [7] — alongside colour
features. These features are given as input to a decision tree trained using AdaBoost [3]. Our
method outperforms the approach of Lalonde ef al. [11] for both shadow edge detection and
ground shadow edge detection on a database of images from Zhu et al. [25].

1.1 Background

A shadow is caused by an obstruction between the light source and the target surface. For
a point light source, the intensity of a shadow region will be (relatively) constant and deter-
mined by the amount of ambient light. However, real light sources are seldom well modelled
as infinitely small point sources. In fact, most have finite area. Consequently, shadows can
be divided into umbra, penumbra and antumbra regions according to the degree, and nature
of the obstruction. In common with the literature we use the term shadow to refer to umbra
regions: those wholly occluded from the light source.

Recently, shadow detection methods based on multiple images [6, 8, 12, 14] have been
developed for tracking systems. Weiss [24] averaged the gradient profiles of external images
for the same scene taken at different times to remove shadows (external shadows move with
the sun). Bousseau [2] estimated illumination in single images through interactive user input.
Others have used colour features to estimate shadows in single images without user input.
For example, Vazquez et al. [23] estimated the colour distributions inside and outside shadow
regions to remove shadows. Lalonde et al. [11] used colour ratios across edges in three dif-
ferent colour spaces at different scales to discriminate shadow edges from reflectance edges.
Finlayson [5] used intensity entropy as a criterion to find the optimal projection angle in a
normalized RGB colour space to remove shadows. Others have used local texture/intensity
features to detect shadows (for example Zhu et al. [25]).

The illumination map of an image provides information not available to most of the
shadow detection methods described above. It describes all the changes in illumination
within a scene, including shading caused by changes in surface orientation, and incident
illumination changes such as attached and cast shadows. However, extracting illumination
maps from images is itself a challenging task [1, 13, 19, 22], and thus so far such maps
have not been used widely in shadow detection. Jiang et al. [7] proposed a steerable filter
framework to derive illumination and reflectance maps of a scene from a single image based
on the relationship between luminance and texture, colour, and local contrast. We extend
this framework to improve upon existing methods for cast shadow detection in two ways.
First Jiang et al.’s algorithm works well for low- but not high-frequency components of the
original image. Since shadow edges are typically high frequency changes in the illumination
map we extend their method to work well at high frequencies. Second, we extend the method
of Lalonde et al. for shadow detection by incorporating the features extracted from the illu-
mination map as additional inputs to a decision tree that has been trained using supervised
learning. The paper is structured as follows. First we outline our algorithm. In Section 2 we
describe the extraction of colour edge features which is the basis of Lalonde et al.’s approach,
and which is also utilised here. In Section 3 we describe how we extend the illumination map
estimation technique of Jiang et al. Next (Section 4) we describe how we perform shadow
edge detection by combining the colour features from the first approach with illumination
features from the second approach. Finally (Section 5) we present experimental analysis of
a number of variations of our method and that of Lalonde et al.
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Figure 1: A flow chart giving a high level overview of our proposed algorithm.

1.2 Outline of algorithm

In this paper, intensity features from illumination maps [7] and colour features [4, 11] from
original images are combined to address the problem of shadow detection. The advantage
of adding illumination features is that luminance changes due to changes in albedo will
have already been removed from such maps. Thus these maps provide robust features for
detecting shadow regions. However, the approach of Lalonde ef al. only extracted colour
ratio and texture features from an image to use as inputs to a supervised learning method.

The structure of our approach is captured in Figs 1 and 2. The upper path corresponds
broadly to the approach of Lalonde et al. without their texture features. When trained the
decision tree (Decision Tree 1) produces an initial shadow edge map. We use this to help
improve the illumination map estimation process which is itself an improved version of the
algorithm of Jiang et al., and is the lower path in Fig. 1.

The illumination estimation process is shown in Fig. 2. We improve on Jiang ef al.’s
intrinsic image extraction framework [7] in order to obtain more accurate illumination maps
in higher frequency bands. Jiang et al. look for global correlations between AM (Ampli-
tude Modulation or local luminance contrast) and LM (Luminance Modulation or average
local luminance) to spot the difference between reflectance changes (where AM and LM
are uncorrelated) and illumination changes (where AM and LM are correlated). The global
strategy works well at low frequencies, but not for high frequency changes. We therefore
calculate local correlations between LM and AM, and separately between LM and colour
features. Both these help us to separate high-frequency filter responses, at a local level, for
later reconstruction into either illumination or reflectance maps. For the lower-frequency
bands, the global correlation between luminance and contrast in each band still determines
the corresponding weights for reconstruction [7].

Having improved the separation of intrinsic images in the lower path, we then extract
features from the illumination map. Using these illumination ratio features and the colour
features extracted in the upper path, a second decision tree (also trained using AdaBoost)
produces an improved estimate of the shadow edge probability map. This more effectively
discriminates shadow edges from reflectance edges. This revised shadow edge probability
map can then be improved further using a Conditional Random Field model with constraints
that edges should be continuous and that neighbouring pixels should have the same state.
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Figure 2: A flow chart giving detail on the improved approach for estimating the illumination
map. This corresponds to the first two stages of the bottom row in Fig. 1. LM’ is calculated
directly from the undecomposed image. H and L refer to the outputs of steerable filters in
High and Low frequency bands respectively. The SFD is performed in up to 8 frequency and
8 orientation bands.

2 Colour segmentation and colour feature extraction

We now detail the colour segmentation and feature extraction method. Colour features are
used to aid the identification of shadows directly, and to improve the illumination maps
produced by the steerable filter method. We initially produce a colour segmentation using
the mean shift algorithm [4] in RGB space. The edges of the same colour region will be
labelled as shadow or non-shadow edges as shown later.

Having determined the locations of colour edges we extract colour ratios (CR) across
edges. The ratio is between the minimum and maximum values in different colour channels
across an edge [11]. Shadow edges are due to illumination changes so the illumination ratio
for regions either side of shadow edges should be the same everywhere in the image, hence
hue should be roughly constant across shadow boundaries. Non-shadow edges will not be
so constrained. It is unclear which colour space is the best to estimate these ratios, thus we
calculate colour ratios in 3 different spaces (RGB, HSV and LAB) and at 4 different scales.
Altogether, we derive a 36-dimensional vector for each edge pixel in the image. Following
Lalonde et al., we then use an AdaBoost-based decision tree, trained on a set of labelled
images, to classify edges as shadow or non-shadow (see Section 5). This decision tree gives
the probability that each edge pixel found by the mean shift algorithm is a shadow edge. The
result of applying the decision tree is the initial shadow edge probability map which is used
as input to the illumination map estimation process (by helping to separate reflectance and
illumination changes, see Section 3). The colour features, meanwhile are also input directly
into the final shadow detection process along with the illumination features.

3 Illumination estimation

Intensity values in natural images are the product of reflectance and illumination, and do not
always represent the intrinsic features of the scene, such as the illumination profile, surface
orientations or surface colours. It can be advantageous to separate illumination changes from
reflectance changes: a type of intrinsic image extraction. Jiang et al. [7] proposed a steerable
filter-based framework to measure the correlation between luminance and local contrast, tex-
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ture, and colour in each frequency and orientation band, then used the resulting correlation
coefficients to derive weights for each component of the steerable filter output in order to re-
construct the illumination and reflectance maps. Due to its global nature, this method works
well on low but not on high-frequency bands because the origin and hence appropriate clas-
sification of high frequency components tends to vary across the image. Thus, we proposed
to calculate local correlations in each band and apply these correlations to derive local rather
than global weights. At the end of this section we show how if we calculate both local and
global correlations we can automatically determine the frequency band at which to shift from
one to the other, we refer to this as a hybrid correlation method.

3.1 Local correlation between LM and AM

When illumination changes fall across a visual texture the luminance difference (amplitude,
absolute contrast) between the light and dark parts of the texture varies with the illumination.
This positive correlation between illumination and local amplitude can be used to identify
shadow edges [18]. Suppose an image has been decomposed into multiple frequency and
orientation bands /;;(i =1,...,N; j=1,..,M) where N is the number of frequency bands and
M the number of orientation bands. Modulations of local amplitude (AM) can be represented
as the envelope of the high frequency components in /;;. In practice, we can extract the
low frequency information from the amplitude of the high frequency components in the
original image, i.e. F;(abs(I;j)), where F; is a low-frequency filter. Similarly, local luminance
modulation (LM) can be directly extracted by low-frequency filtering, i.e. F;(I). If we have
already segmented the image into regions based on colour (e.g. Fig.4(b)) we need only
examine correlations between LM and AM in local regions on either side of colour edges. Let
us denote the set of colour edge pixels in the colour segmentation to be D = {dj, ...dy,...dk },
so that di indexes a point in any the original image I, or any of the filter outputs /;; . Colour
in this case comprises both luminance and hue, so the colour edge pixels will be a superset of
the shadow edge pixels. Thus we need only examine the regions around these colour edges
to find the shadow edges. If the correlation between LM and AM is strong enough, then we
assign the associated edge components to the illumination map, otherwise they are assigned
to the reflectance map. The local correlation — for a pixel dy — between AM and LM for the
" frequency band and the j orientation band is denoted by W/3* (d;) and is defined as

W;?M(dk) = cor[Fldk (abS(Iij)),dek ()] M

where W{}M (p) = 0 for any pixel p ¢ D, cor|s;,s;] calculates the correlation between two

components s; and s;, and Fldk (") is the output of the filter around edge pixel dy.

To calculate the local correlations we must be careful to select the appropriate region of
the input image. The high frequency outputs of the steerable filter pyramid will always have
large values in the region of edges in the original image, as shown in Fig.3(c). Therefore
if AM is calculated in a local window including these edge pixels the correlation with LM
will be compromised. In practice, the values of LM and AM in regions adjacent to each
edge are the real concern. Thus an oriented rectangular window is used to calculate the
local correlation. As shown in Fig.3(d), local correlation is calculated for the two regions
(shaded region in Fig.3(d)) either side of the edge region, but the weights are applied to the
central edge region. For component ;; which is the response of steerable filter in direction
(j—1)m/M, the rectangular window should be oriented at /2 — (j — 1)m/M; orthogonal
to the filter. Fig.4(h) shows the local correlation between LM and AM in one frequency and
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Figure 3: Local correlation between LM and AM (a) original image, red line indicates the
region sampled in (c). (b) AM content at frequency level 1 and vertical orientation. (c)
LM (blue line) and AM (red line) in this frequency/orientation band. The vertical blue lines
represent the internal boundaries of the rectangular window (d) used to determine local cor-
relation. The correlation between LM and AM is calculated using the two hatched regions,
not the central region. The coarsely dashed box represents a window rotated to match a
different orientation band.

orientation band. From the results, we can see the local correlation between LM and AM
indicates changes in illumination, but may also represent reflectance changes that happen
to share features with shadows. The initial shadow edge probability map is used to remove
these reflectance changes from the illumination map. We now describe how this is done.

3.2 Shadow edges refine the illumination map

As described in Section 2, a decision tree based classifier is used to estimate the probability
of a luminance edge being a shadow edge pixel based on the colour features. We denote this
probability as W¢(dy) for the edge pixel d;. We now want to produce a reconstructed illu-
mination map based on the local correlation and this initial shadow edge map. The weights
of each component in this reconstruction are different for each edge pixel. We denote these
weights Wilj(dk), where [ refers to the fact that the reconstruction is partly based on the local
correlation (as opposed to the global correlation). Simply put it is the sum of W¢(d}) and the
local correlation W/ (dy), for each edge pixel d,

W (di) = W (di) + Wi (di) ©)

Intuitively, the Decision Tree 1 based on colour features indicates that, for a shadow edge,
we should allocate the edge to the illumination map rather than to reflectance. Wllj( p)=0
for any pixel p ¢ D.

3.3 Hybrid correlation

The higher frequency bands in the steerable filter decomposition contain fine details in the
image, and are dominated by local features. Therefore a local correlation strategy is better
for the high frequency bands than the global strategy which is better for lower frequency
components. In our hybrid strategy we thus combine the local and global strategies prior to
reconstructing the reflectance and illumination maps. The reconstruction of the illumination
map proceeds as follows:

T-1
IM =Y Fa (WS 5 1)+ Y0 Fine (W % 1) 3)
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(e) (9

Figure 4: Intermediate results. (a) original image. (b) colour segmentation result. (c) initial
shadow edge map. (d) final shadow edge map. (e) illumination map (IM) reconstructed
with global correlation. (f) IM from local correlation. (g) IM from hybrid correlation. (h)
local correlation between LM and AM in one component of (a),where colour represents
the correlation coefficients, the background image shows the corresponding steerable filter
response.

where Fj,, is the inverse or reconstruction filter corresponding to the relevant steerable fil-
ter [20] used in the decomposition (steerable filters are their own inverse). Wi‘i is the global
correlation, and 7 is the threshold frequency above which the local correlation strategy is
applied (note: big i = high frequency filter). T is determined from the energy distribution of
the global correlation measure Wi‘j. as follows,

Ir= argtmin (Z;=1 lew:1 WE/Z?; 21]‘4:1 Wi > l) S

where A is the energy threshold. We set A = 0.9 in this paper. Fig.4(e-g) shows example
reconstructed illumination maps using global, local and hybrid correlations. The hybrid
method characterises the shadow best, retaining its edges and intensity.

4 Shadow detection

We now combine the colour features described in Section 2 and illumination information
(Section 3) into a new shadow edge classifier trained on features from both of sources. We
first calculate intensity ratios in the illumination map from regions on either side of colour
edges. As with the colour ratios we calculate these intensity ratios at 4 different scales. Taken
with the colour features, this provides a 40-dimensional feature vector for each edge pixel
identified by the mean shift method. We trained a new decision tree (Decision tree 2 in Fig 1)
to classify pixels as shadow or non-shadow. The decision tree gives the probability value
Psha Of each pixel being on a shadow edge. To further refine the resulting classifications, we
introduce a conditional random field (CRF) model [9, 21] built with the constraint that edges
should be continuous. The full cost function can be written as:

E=LY Fa(Plp)+ Y 2o Fslpislps) ©)
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where the data cost is F;(P,, [p;), the smoothing cost is Fy(Ip;,lp;), and A controls the balance
between these two items. For the data cost, the penalty for labelling a pixel shadow or non-
shadow will be —log(psua) or —log(1 — pgua). In order to reduce the influence of this prior,
a regularisation term is added, so that F;(F;,Ip) is written as

. _ _log(Pshd) —lOg(pc) if lPi =1 (shadow)
Fd(PlalPi) = { —log(1 — psna) —log(1 —p¢) if 1,, =0 (non — shadow) ©

The constraint function F;(Ip, lp_/.) evaluates the cost of giving label Ip. to point F;, and label
Ip; to point P;, where F; and P; are adjacent to each other. If they belong to the same colour
edge, and have similar features, then they should have the same label. Otherwise, setting
same labels should be penalized. Function F; is defined as

F§:1(Pl.7éPj)exp(—ﬁ||fP,-—ij||§) @

where 1(*) is the indicator function; fp. is the colour ratio feature in HSV and LAB space
of points P,. The optimal label can be found through minimizing the whole cost function
i.e.min E by using the graph cut algorithm [9, 21].

S Experimental results

All algorithms tried were evaluated against the labelled dataset from [25], which comprised
355 mainly outdoor images including natural views, street views and satellite images. Some
shadows are caused by natural objects, such as trees and stones, and some by man-made
objects, such as buildings, cars, and lamp posts. We conducted two-fold cross validation
(with odd and even numbered images making up each set). We tested various versions of our
algorithm to see which combination of features was the most effective. It is important to note
that Lalonde’s data set labels only shadow edges that fall on the ground plane. We therefore
tested our algorithm on this criterion, and on the more difficult problem of general shadow
edge detection. This involved establishing new ground truth labels for the data set adding
non-ground plane shadow edges. Lalonde et al. designed their algorithm for the ground
shadow edge task. To be fair to both methods we thus tested each on the full set of 355 with
our ground truth, and also on the 135 images (taken from Zhu’s [25] and LabelMe [16]) used
by Lalonde to test ground shadow detection. Lalonde et al. do not detail their validation
methodology, so we again apply two-fold cross validation.

Fig.5 compares the performance of the various classifiers we generated. Lalonde refers to
the original AdaBoost method utilising colour and texture features. We also tested Lalonde’s
method switching off the texture features and using only colour ratio (CR) features. The
two methods where indistinguishable based on Zhu’s data set, but produced noticeable dif-
ferences on Lalonde’s images. This is because ground plane textures are more consistent
than the general case. Thus texture features could work well for ground shadow, but might
not for more general shadows. We considered three algorithm variants for generating the
illumination maps: the original Jiang et al. [7] method based on global correlations only
(global illumination map, GIM), one based on local correlations only (LIM), and a hybrid
using global correlations in low frequency bands but local correlations in high frequency
bands (HIM). None of these treatments incorporated colour features in Decision Tree 2 (to
determine the revised shadow edge map), but they all employed those features in Decision
Tree 1 to help them refine their illumination maps. HIM + colour refers to a Decision Tree


Citation
Citation
{Kolmogorov and Zabih} 2004

Citation
Citation
{Szeliski, Zabih, Scharstein, Veksler, Agarwala, and Rother} 2008

Citation
Citation
{Zhu, Samuel, Masood, and Tappen} 2010

Citation
Citation
{Zhu, Samuel, Masood, and Tappen} 2010

Citation
Citation
{Russell, Torralba, Murphy, and Freeman} 2008

Citation
Citation
{Jiang, Schofield, and Wyatt} 2010


JIANG, SCHOFIELD, WYATT: SHADOW DETECTION 9

1

0.9

0.8f

°
3

——Gm

——LIM
HIM

—o— HiM+colour

| ——Lalonde

CcRr

+ HINHColour+CRF(p =0.6)

| o HIM+Colour+CRF(p =0.7) : i —CR

<

- ——Lalonde
HIM+Colour+CRF(p =0.8) —&—HIM+colour

o HIM+Colour+CRF(p =0.9) - HIM
n n

o
T

o

>
T

True Positive Rate
o o o
@

o ¢
=
T

True Positive Rate
o
o)

o
@

L L L L L L T | L L L L L L L R R |
01 02 03 0.4 0.5 0.6 0.7 08 0.9 1 0 0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9 1
False Positive Rate False Positive Rate
a

Figure 5: Shadow detection results. (a) ROC curves for the full data set from Zhu et al. [25]
for shadow edge detection and (b) on the subset used in Lalonde ef al. [11] for ground shadow
edge detection. (c) result samples: For each column: top, original image; middle, shadow
detection result using colour features; bottom, the results of proposed algorithm.

2 that was trained using both the illumination map features, and the colour ratio features.
Classifications based on HIM + colour were more accurate on both ground truths than all
previous methods. Colour and illumination features complement each other, and thus edge
pixels are classified as shadows only when hue is relatively constant across the edge and the
change in illumination is consistent with the difference between sun and ambient lighting.
Finally, adding the CRF model increased classification performance to 83.5% correct rate.
Here we adjusted the false alarm rate by altering the regularisation term p. in the CRF. The
other parameters were selected as A = 0.5, 3 = 4 through cross-validation. More shadow
detection samples are shown in Fig.5(c). Compared with shadow detection results based
on colour features, the proposed algorithm can remove the false alarms and increase the
possibility of true positives as well.

6 Conclusion

In the proposed shadow detection algorithm, features from the illumination maps and colour
segmentation results are combined as inputs to a decision tree trained to detect shadow edges.
A CRF model then improves the detection results by imposing an edge continuity constraint.
[lumination maps are extracted using a multi-scale intrinsic feature extraction algorithm.
A hybrid correlation strategy is proposed to for selecting filter responses for reconstructing
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the illumination maps. The proposed algorithm is relatively accurate, outperforming other
recent methods. However, there is room for improvement. First, the window size for the
reconstructing the illumination map could be optimised. It may also help to make the win-
dow size for calculating correlations adaptive. For example, a single window size may be
inappropriate if a scene contains a wide range of scales (near and far views) and the stan-
dard deviation within a local window could be a useful guide to for decideing the window
size. Finally, we are planning to use shadow detection results to further refine intrinsic image
extraction methods in an iterative fashion.
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