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Modeling how visual saliency guides the deployment of attention
over visual scenes has attracted much interest recently — among both
computer vision and experimental/computational researchers — since vi-
sual attention is a key function of both machine and biological vision
systems. Research efforts in computer vision have mostly been focused
on modeling bottom-up saliency. Strong influences on attention and eye
movements, however, come from instantaneous task demands. Here, we
propose models of top-down visual guidance considering task influences.
The new models estimate the state of a human subject performing a task
(here, playing video games), and map that state to an eye position. Fac-
tors influencing state come from scene gist, physical actions, events, and
bottom-up saliency. Proposed models fall into two categories. In the first
category, we use classical discriminative classifiers, including Regres-
sion, kNN and SVM. In the second category, we use Bayesian Networks
to combine all the multi-modal factors in a unified framework. Our ap-
proaches significantly outperform 15 competing bottom-up and top-down
attention models in predicting future eye fixations.

0.1 Features

Employed features are from vision and action modalities. For description
of the scene we use light-weight yet highly discriminant features. For
driving games, we have collected action data which we combine with
annotated scene events (e.g., stop sign) for state determination.

Mean eye position (MEP). MEP (mean of the distribution of all
human fixated locations) is an oracle prediction derived from the human
data itself (as opposed to computed by an algorithm).

Gist (G). Gist (scene context) is a very rough representation of a
scene and does not contain much details about individual objects or se-
mantics but can provide sufficient information for coarse scene discrimi-
nation (e.g., indoor vs. outdoor or category of the scene). The pyramid-
based feature vector (pfx) [3], relies on 34 feature pyramids from the
bottom-up saliency model: 6 intensity channels, 12 color channels (first 6
red/green and next 6 blue/yellow color opponency), and 16 orientations.
For each feature map, there are 21 values that encompass average values
of various spatial pyramids: value 0 is the average value of the entire fea-
ture map, values 1 to 4 are the average values of each 2×2 quadrant of the
feature map and values 5 to 20 are the average value for each of the 4×4
grids of the feature map leading to overall of 34× 21 = 714 elements.
It is possible to reduce dimensionality of this vector while maintaining
discriminability.

Bottom-up saliency map (BU). This model includes 12 feature chan-
nels sensitive to color contrast (red/green and blue/yellow), temporal lu-
minance flicker, luminance contrast, four orientations (0◦,45◦,90◦,135◦),
and four oriented motion energies (up, down, left, right). After center-
surround difference operations and across scale competitions, a unique
saliency map is created and subsampled to a 20× 15 feature map which
is linearized to a vector of 1× 300 [1]. We used the original bottom-up
saliency map both as a signature of the scene and a saliency predictor.

Physical actions (A). In the driving experiment, action is a 22D fea-
ture vector containing wheel positions, pedals (brake and gas), left and
right signals, mirrors and left and right views, gear change, etc which are
wheel buttons that subjects used for driving. Note that in general, physi-
cal actions recorded in this way are different than actions that happen in
the game but they convey some knowledge about them.

Labeled events (E). Each frame of games was manually labeled as
belonging to one of different events such as {left turn, right turn, going
straight, red light, adjusting left, adjusting right, stop sign, traffic check
and error frames due to unexpected events that terminate the games like
hitting other cars}. Hence this is only a scalar feature.

N
S

S

SMK PMW MSS Hulk WR0

1

2

3

3DDS 18WoS TDU
0

1

2

3

4

Gauss
MEP

kNN(Gist)
Action(REG)

0

1

2

3

JBAUF NFSU TG

Event(REG)

BUraw

REG(Gist)

SVM(Gist)

REG(BU)

Original Frame SVM

3D
D

S 
  #

 fr
am

e 
20

00
18

W
O

S 
# 

fr
am

e 
20

00

Figure 1: Fixation prediction results over 11 video games. Bottom-
right panel shows two sample frames and corresspondings attention maps
learned by SVM classifier. Red circle is the fixation

0.2 Classifiers

The classifiers estimate p(X |St) =
p(St |X)p(X)

p(St )
where St is a feature vector

(or combination of them) estimating subject state. P(X) is the prior over
eye positions (the MEP model computed over other subjects than the one
under test) and is biased by likelihood p(St |X) (probability of state given
eye position). In the case where St is only the Gist, our method reduces to
the approach in [2].

Regression(REG): Assuming a linear relationship between feature
vectors M and eye fixations N, we solve the equation M×W = N. The
solution is: W = M+×N, where M+ is the (least-squares) pseudo-inverse
of matrix M. When the feature vector is b (a constant scalar), the solution
(predicted map) is simply the average of all eye position vectors in N.
This classifier is equivalent to the MEP model. We used SVD to find the
pseudo inverse of matrix M.

kNN: The idea here is to look into training data and find similar
neighborhoods to the current test frame and then make attention maps
from the associated eye fixations. This resembles a local MEP model,
where we make a map with 1’s at fixated locations and zeros elsewhere.
Then to generate an attention map, we convolve this map it with a Gaus-
sian filter.

SVM: To use SVM, we first reduced the high-dimensional feature
vector using PCA to preserve 95% of variance. Then a linear multi-class
SVM was trained from other subjects with 300 output classes. Due to
the high number of classes and huge amount of data using SVM is slow.
Experimenting over a subset of the data with low-resolution eye fixation
maps (4×3 and 8×6 hence number of classes 12 and 48) and with poly-
nomial and RBF kernels did not improve the results.

Fig. 1 shows classification results over 11 video games (1.4M video
frames and 11M fixations) using Normalized Scan-path Saliency (NSS
score). MEP model is simple the average fixation position calculated from
our training data (leave-1-out paradaigm) and BU is the bottom-up
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