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Abstract

This paper describes an interactive system for quickly modelling 3D body shapes
from a single image. It provides the user with a convenient way to obtain their 3D body
shapes so as to try on virtual garments online. For the ease of use, we first introduce
a novel interface for users to conveniently extract anthropometric measurements from a
single photo, while using readily available scene cues for automatic image rectification.
Then, we propose a unified probabilistic framework using Gaussian processes, which
predict the body parameters from input measurements while correcting the aspect ra-
tio ambiguity resulting from photo rectification. Extensive experiments and user studies
have supported the efficacy of our system. This system is now being exploited commer-
cially online1.

1 Introduction
Estimating or modelling 3D human body shape is of great importance in both computer
vision and graphics, and it has significant commercial applications in entertainment and gar-
ment design. Achieving accurate and convincing body shape model quickly and easily for
non-expert users is a major challenge for building a good body shape modelling system. In
the past decade, many efforts have been done to pursue these tasks. These prior systems can
be mainly classified into two types: silhouette-based systems [3, 5, 8, 13] and measurements-
based systems [10, 17, 18]. Silhouette-based systems use one or more images as input and
estimate the 3D body shape by fitting the silhouette in each view. They have achieved good
accuracy in prediction of body shapes and poses but usually suffer from huge computational
cost and require considerable manual effort for segmentation. Measurement-based systems,
on the other hand, use anthropometric measurements (e.g. height, weight, chest circum-
ference, etc.) or body parameters (e.g. BMI ratio) as input. Compared with silhouettes,
anthropometric measurements are relatively invariant to articulation changes (e.g. arm pose
changes), better reflect the physiological structure of humans, and give meaningful cues for
both global and local body structures. Since a concise input is used, these systems usu-
ally run much faster than silhouette-based systems. However, they require anthropometrical
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Figure 1: The flowchart of our 3D body shape modelling system.

knowledge to operate, and hence they are more suitable for professional graphics designers
rather than non-expert external users.

To exploit the advantages of both types of systems, we present a novel interactive body-
shape modelling system using 2D anthropometric measurements extracted from a single
“doorway" image, i.e. a photo taken in front of an arbitrary doorway. With a small amount
of interaction from users, our system can quickly generate accurate 3D body shape models.
Extensive experiments and user studies have been conducted to verify the efficacy of our
system. The main contributions of this paper includes: (1) a novel user interface for extract-
ing anthropometric measurements from photos; (2) the automatic image rectification using
vanishing points in degenerate cases; (3) a new probabilistic approach for simultaneously
predicting the body parameters from measurements and correcting the aspect ratio of the
doorway image; and finally (4) a working system for online 3D body shape modelling and
garment fitting which is accessible to the public.
Related Work: We here give more details on previous studies of 3D human body shapes
modelling Many approaches are based on a shape-from-silhouettes framework. Münder-
mann et al. [13] and Bǎlan et al. [3] used the SCAPE (Shape Completion and Animation for
PEople) model [2], a parametric model for building body shapes, to fit multi-view image sil-
houettes obtained from 4 to 8 cameras. PCA coefficients are used to model individual body
shape variations. Guan et al. [8] extended their work to solve the single-view input problem
and improved the reconstruction by including the shading cues. Chen and Cipolla [5] also
addressed the problem of recovering 3D body shapes from a single silhouette. They further
used Gaussian Process latent variable models, a non-linear manifold approach, on top of the
PCA coefficients for a more compact shape presentation and uncertainty measurements.

These shape-from-silhouettes methods have achieved fairly accurate 3D body shapes and
good fitting to the input silhouettes. However, there are a couple of drawbacks that limit their
applications. First, since silhouette matching involves optimising highly non-linear objective
functions and extensive searching in the shape space, these approaches are usually very
expensive in computation. To generate a single output, it may take hours, which makes them
hard for online applications. Second, these prior-art systems usually require considerable
amount of initialisation and interaction, e.g. registering the skeleton to the silhouette or using
GrabCut [16] to crop out the silhouettes from images, which can be difficult for users without
training. More problematically, the quality of the pose initialisation and segmentation can
seriously affect final reconstructed 3D shape.

An alternative approach to body shape modelling is to use anthropometric measurements
as input. In the field of graphics, Magnenat-Thalmann et al. [10, 17, 18] have proposed
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systems to generate 3D body shapes from tape measurements, e.g. chest, waist, etc., or body
parameters such as fat percentage and hip-to-waist ratio. To relate the input measurements
with the skeleton joints and the PCA shape coefficients representing the 3D body shape,
radial-basis interpolations and linear regressions have been used. The systems have achieved
near real-time performance. However, these systems usually require a large number of input
variables, and these professional anthropometric tape measurements or body parameters are
usually not available for non-expert users.

In view of these problems, our system not only supports regular tape measurements and
body dimensions, e.g. height and weight, but also introduces a novel mechanism that allows
users to annotate 2D measurements on a single image and thereby avoid the need for a tape
measure. This mechanism overcomes the problem that many non-expert users do not know
their tape measurements and hence greatly improves the usability of the system.

An Overview of the System: As shown in Fig. 1, the operation of our body-shape-from-
measurement system can be summarised into following stages. Firstly, the user is requested
to provide their basic dimensions, e.g. height and weight, and upload a photo in which they
stand against a doorway. Secondly, the doorframe is extracted and used to rectify the im-
age into the ideal frontal view automatically (see Section 2.1). Then, a selected set of 2D
anthropometric measurements are annotated on the rectified image interactively (see Sec-
tion 2.2). Finally, the 3D body shape is predicted from query input measurements (both
known body dimensions and image measurement extracted) by a Gaussian Process regres-
sor, which is learned from a 3D human database and captures the relationship between these
measurements and the 3D morphing parameters. The aspect ratio ambiguity resulted from
the rectification stage is also corrected at this stage (see Section 3).

2 Extracting Body Cues by Single View Rectification
Our system provides a novel interface that allows the user to extract a few 2D measurements
from their doorway photo in an interactive way. This interface is motivated by the concern
that many customers cannot clearly remember their actual tape measurements. A simple
on-site image-based measurement extraction interface can thus be a good replacement. The
rest of this section will give the details of how the image viewpoint can be rectified using
doorway information and how anthropometric measurements are then extracted from the
corrected frontal-view image.

2.1 Rectifying the Doorway Images
Since input images are taken under uncontrolled conditions, they usually suffer from per-
spective distortion caused by arbitrary camera orientation and focal length, as shown in
Fig. 2(a). These images have to be rectified to a frontal view so that more accurate image
measurements can be extracted. The geometry of the rectangular doorframe and vanishing
points provides cues for an automatic rectification. The problem of using vanishing point
to calibrate intrinsic and extrinsic camera parameters has been addressed in existing litera-
ture [4, 6, 7, 9]. In this subsection, we further explore the problem in near-degenerate cases
in which one of the vanishing points is close to infinity, and later present a novel algorithm
to solve the problem in Section 3.

To formulate the problem, we denote the intrinsic matrix of the camera as K = diag( f , f ,1),
where f refers to the focal length of the camera, and extrinsic camera parameters as R and
t, representing the camera rotation and translation in the world coordinate system. Without
loss of generality, we assume that the translation vector t = 0 and the image center u = 0.
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Figure 2: (a) Image rectification by estimating vanishing points from the rectangular door-
frame; (b) Measurements for defining aspect ratio distortion. Here, the horizontal and the
vertical measurements are hips width and crotch height, respectively.

The task of image rectification is then to estimate the unknown camera rotation matrix R and
focal length f .

We denote the homogenous image coordinates of the two vanishing points in horizontal
and vertical direction as ṽ1 ∼ [v1x,v1y,1]T and ṽ2 ∼ [v2x,v2y,1]T , respectively. The posi-
tions of vanishing points are uniquely determined by the rectangular doorframe, as shown in
Fig 2(a). We use the approach in [6] to find these vanishing points. According to projective
geometry, we then have

ṽ1 =s1K[R, t][1,0,0,0]T = s1Kr1, ṽ2 = s2K[R, t][0,1,0,0]T = s2Kr2, (1)
where rj ( j = 1,2,3) refers to the j-th column of matrix R; s1 and s2 are scaling factors.
From (1), the camera rotation matrix R can be solved as follows:

R =[r1,r2,r3] =
[

K−1ṽ1
‖K−1ṽ1‖ ,

K−1ṽ2
‖K−1ṽ2‖ ,τ

(
K−1ṽ1×K−1ṽ2
‖K−1ṽ1×K−1ṽ2‖

)]
. (2)

where τ ∈ {1,−1} is a sign coefficient which guarantees that detR = 1.
Finally, the frontal-view image is obtained by de-rotating the camera with R−1. For an

arbitrary point p̃ in the unrectified image, its corresponding homogenous coordinate p̃0 in
the frontal view image can thus be computed as p̃0 = Hp̃ = KR−1K−1p̃. Given an input
image, the homography matrix H is a function of the uncalibrated camera focal length f . To
determine H, earlier work [4, 6] exploited the orthogonal constraint of the rotational matrix
rT

1 r2 = 0 and gave a closed-form estimate of the focal length f =
√−(v1xv2x + v1yv2y). This

works in the regular cases when ṽ1 and ṽ2 are at finite positions.
Unfortunately, we find that in practice most input images are near-degenerate, in which

one of the vanishing points ṽ1 or ṽ2 is close to infinity. In those cases, H is ambiguous
as the camera focal length f cannot be accurately estimated, and this results in an aspect
ratio distortion in the rectification result. This problem is unexplored in the literature. We
here provide a novel quantitative uncertainty analysis of the distortion ratio α , which is de-
fined as: α = mv,eMh

Mvmh,e
, where Mv and Mh are referred to two arbitrary vertical and horizontal

measurements in the 3D space, and mv,e and mh,e are referred to the corresponding measure-
ments taken on the rectified image with distortion (see Fig 2(b) for example). Without loss
of generality, we assume that vanishing directions have been aligned with the axes of world
coordinates. We first consider the case that the vertical vanishing point v2 is at infinity, i.e.
ṽ2 ∼ [0,1,0]T , while the horizontal vanishing point has a finite coordinate ṽ1 ∼ [v1x,v1y,1]T .
Using (2) and the orthonormal constraint of the rotational matrix rT

1 r2 = 0, we can infer
that v1y = 0, and hence the rotation matrix R and the homography matrix H for rectification
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become

R =


v1x√

v2
1x+ f 2

0 − f√
v2

1x+ f 2

0 1 0
f√

v2
1x+ f 2

0 v1x√
v2

1x+ f 2

 , H = KR−1K−1 =


v1x√

v2
1x+ f 2

0 f 2√
v2

1x+ f 2

0 1 0
− 1√

v2
1x+ f 2

0 v1x√
v2

1x+ f 2

 , (3)

respectively. Both matrices are functions of the focal length f . Now we assume that we
rectify the image based on an inaccurate estimate of the focal length fe, while the actual
focal length of the camera is ft . Given an arbitrary 3D point P = [Px,Py,Pz]T in the world
coordinate system, its corresponding homogenous coordinate p̃e ∼ [p̃e,1, p̃e,2, p̃e,3]T in the
inaccurately rectified image will be:

p̃e =HeKtRtP =
[

f Px

√
v2

1x + f 2
e

v2
1x + f 2

t
+

v1xPz( f 2
e − f 2

t )√
(v2

1x + f 2
e )(v2

1x + f 2
t )

, f Py,Pz

√
v2

1x + f 2
t

v2
1x + f 2

e

]T

, (4)

and the actual image coordinate pe can be written as

pe = [pe,x, pe,y]T =
[ p̃e,1

p̃e,3
,

p̃e,2

p̃e,3

]T =
[

f
Px(v2

1x + f 2
e )

Pz(v2
1x + f 2

t )
+

v1x( f 2
e − f 2

t )
v2

1x + f 2
e

, f
Py

Pz

√
v2

1x + f 2
e

v2
1x + f 2

t

]T

. (5)

Now we consider two measurements in the 3D world coordinate system: an arbitrary
horizontal measurement Mh defined by two 3D points Pl = [Pl

x ,Py,Pz]T and Pr = [Pr
x ,Py,Pz]T ,

and an arbitrary vertical measurement Mv defined by two 3D points Pu = [Px,Pu
y ,Pz]T and

Pd = [Px,Pd
y ,Pz]T (see Fig 2(b)). It is obvious that the lengths of these two measurements are

Mh = |Pr
x −Pl

x | and Mv = |Pu
y −Pd

y |, respectively. Using (5), we can transform the end points
of these two measurements into the rectified image and obtain the corresponding image
measurements mh,e and mv,e as:

mh,e = |pr
e,x− pl

e,x|= f
|Pr

x −Pl
x |(v2

1x + f 2
e )

Pz(v2
1x + f 2

t )
, mv,e = |pu

e,y− pd
e,y|= f

|Pu
y −Pd

y |
Pz

√
v2

1x + f 2
e

v2
1x + f 2

t
, (6)

By combining the equations above, we can finally obtain the distortion ratio α caused by the
inaccurate focal length estimate as follows.

α =
mv,eMh

Mvmh,e
=

√
v2

1x + f 2
t

v2
1x + f 2

e
. (7)

Similarly, in the case that the horizontal vanishing point v1 is at infinity, i.e. ṽ1 ∼ [1,0,0]T ,

we have α =
√

v2
2y+ f 2

e

v2
2y+ f 2

t
. The method for correcting this aspect ratio ambiguity in the body

shape estimation will be further addressed in Section 3.

2.2 Selection of Image Measurements
After the image rectification stage in Section 2.1, users are asked to annotate a selected set
of measurements on the frontal-view image. The selection of image measurements are based
on following criteria. First, these 2D image measurements are well-defined by the anthropo-
metric positions, e.g. top of head, crotch, heels, etc., which are easy to discern and unam-
biguous to users, so that they can be easily and accurately annotated on the photo. Second,
they should have good correlations with the corresponding tape measurements and convey
enough information for estimating the 3D body shape. Third, user’s effort for annotation
should be minimised. We finally adopt the following 5 image measurements according to
the criteria above, including two vertical measurements: image body height (from the top of
head to the heels) and image crotch height (from the crotch to the heels); and three horizon-
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tal measurements: under-bust width, waist width, and hip width. These three horizontal
measurements are taken at fixed vertical positions between the top of head and the crotch.
These vertical positions have been optimised on a training set of annotated image (see Sec-
tion 4) so that the resulting image measurements have high correlation factors (ρ > 0.90)
with their corresponding tape measurements. Our system provides tools that allow users to
mark up these 5 photo measurements quickly.

3 Probabilistic Estimation of Body Shapes
In our system, a body shape estimator is learned to predict the 3D body shape from user’s
input, including both image measurements (see Section 2.2) and actual measurements.
Generating 3D Training Data: The Civilian American and European Surface Anthropom-
etry Resource (CAESAR) dataset [15], which contains over 2000 North American and Eu-
ropean 3D human body instances, is used as the 3D training data. To concisely represent 3D
body shapes, we register each 3D instance in the dataset with a 3D morphable human body
model, which is similar to [1]. An arbitrary 3D body shape V is decomposed into a linear
combination of body morphs: V = V0 +∑P

j=1 y j∆Vj, where V0 refers to the zero body shape
and ∆Vj ( j = 1,2, · · · ,P) are P different modes of body morphs. In this way, any body shape
can be defined by a P-dimensional vector of morphing parameters y = (y1,y2, · · · ,yP).
Learning a Body Shape Estimator: Learning a shape-from-measurements estimator can
be formulated into a regression problem. We denote y as the vector of morphing parame-
ters, and z = {zV,zI} as the vector of input measurements, which is concatenated by actual
measurements zV and image measurements zI. In the following contexts, zV and zI are
normalised by the actual and image body height, respectively.

Given N pairs of known body morphing parameters Y = {y1,y2, · · · ,yN} and correspond-
ing measurements provided by users: Z = {z1,z2, · · · ,zN}, we learn a Gaussian process (GP)
regressor G that gives a mapping from the measurement input z to those morphing param-
eters y that represent a 3D body shape. With the assumption of dimension independence,
the likelihood of observations can be formulated as the following product of m independent
Gaussian processes [11]: P(Y|Z,θY) = ∏m

i=1 N (Y:,i;0,KY), where N (∗;∗,∗) denotes a
Gaussian distribution; Y:,i denotes the N×1 column vectors constructed from the i-th dimen-
sion of Y; KY = [K(i, j)

Y ]1≤i≤N,1≤ j≤N is the kernel matrix and it is defined as "RBF+linear"
kernels [14] in this paper. To train the model G , we minimise the negative log likelihood L
with respect to the kernel hyper-parameters θY as

L =− logP(Y|Z,θY) =
1
2

tr(K−1
Y YYT )+

m
2

log |KY|+ const. (8)

This optimisation can be done using the scaled conjugate gradient (SCG) approach [12].
Morphing Parameters Prediction with Aspect Ratio Correction (ARC): In the testing
stage, the morphing parameters ŷ can be predicted from measurement inputs using the GP
regressor G obtained in the previous section. However, we have mentioned that the recti-
fication algorithm proposed in Section 2.1 may result in an ambiguity in the image aspect
ratio (height/width ratio), which will affect all those horizontal image measurements. In this
subsection, we propose a probabilistic approach to infer the morphing parameters and cor-
rect this aspect ratio simultaneously. Assume that a testing user provides his/her actual body
measurements ẑV as well as a set of image measurements ẑI = {ẑI,v, ẑI,h} annotated on the
rectified doorway image, where ẑI,v and ẑI,h represent vertical and horizontal image mea-
surements, respectively. The complete set of testing measurements can thus be written as
ẑ(α) = [ẑV, ẑI,v,α ẑI,h], where α represents the ambiguous image aspect ratio resulted from
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(a) (i) (ìi) (iii) (iv) (b)
Figure 3: (a) Examples of synthetic doorway images from CAESAR laser scans; (b) Exem-
plar tape measurements on the 3D mesh for the purpose of evaluation.

the photo rectification procedure (see Section 2.1). Then the joint posterior of the Gaussian
process estimator given the uncertainty of α can be formulated as:

J = P(ŷ,α|ẑV, ẑI,G ) = P(ŷ|α, ẑV, ẑI,G )P(α) = N (ŷ|µy,σ2
y I)N (α|µα ,σ2

α). (9)

where µy = kT
Y(ẑ)K−1

Y Y and σ2
y = kY (ẑ, ẑ)−kT

Y(ẑ)K−1
Y kY(ẑ). Here, the prior P(α) of the

aspect ratio α is modeled by a Gaussian distribution, and its parameters µα and σ2
α are

estimated from a number of real images. In our system, we set the mean to be µα = 0.9935
and the standard deviation to be σα = 0.0506, respectively, which are obtained from our
statistics. Shape prediction and aspect ratio correction can thus be done by minimising the
negative log joint posterior − logJ with respect to y and α:

(ŷMAP,αMAP) =argmin(ŷ,α)− logJ

=argmin(ŷ,α)

(
dy

2
log(σ2

y )+
‖ŷ−µy‖2

2σ2
y

+
1
2

log(σ2
α)+

(α −µα)2

2σ2
α

)
. (10)

By taking derivatives ∂F
∂ ŷ = 0 and ∂F

∂α = 0, we have ŷMAP = µy and dy
2σ2

y

∂σ2
y

∂α + α−µα
σ2

α
= 0, in

which the optimal aspect ratio αopt can be solved efficiently using the fixed point equation

α(t+1) = µα + dyσ2
α

2σ2
y (α(t))

∂σ2
y

∂α

∣∣∣∣
α=α(t)

within a few iterations. Multiple random initialisations

are used to avoid local minima.

4 Experimental Results
In this section, we evaluate the performance our body-shape-from-measurements system on
both synthetic data and real data from users. For the synthetic data, we render a doorway im-
age dataset with 3D laser scans of 1027 European female instances in the CAESAR dataset.
For each instance, three parallel doorway images under different settings are generated. This
give rises to the following 3 image sets. Set 1: Standard (perfect frontal view, fixed camera
distance and focal length, no body rotation; see Fig. 3(a,i) for example); Set 2: Frontal
View (perfect frontal view, varied camera distance and focal length, slight body rotation;
see Fig. 3(a,ii) for example); Set 3: Unrectified (random view, varied camera distance and
focal length, slight body rotation; see Fig. 3(a,iii) and (a,iv) for examples). Set 1 images are
annotated and used for training our system, while Set 2 and 3 images are for testing purpose.
Tests on Frontal View Images: We first examine the accuracy of the regression approach
on perfectly frontal-view images (Set 2 images). In this experiment, a smaller subset of mea-
surements are used as input to recover the 3D body shapes, and the quantitative evaluation
is done by taking 15 standard measurements on the resulting 3D mesh (see Fig. 3(b) for
examples) and comparing them with the ground truths. We perform cross validations on the
dataset to reduce the danger of over-fitting. In each experiment, 75% of instances are used
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Figure 4: (left) Overall measurement prediction errors achieved by different regressors; (cen-
ter) Prediction errors on perfectly rectified images at specific body parts; (right) Overall and
part-wise prediction errors on synthetic unrectified images.

as the training set and the rest are used for testing. We investigated the following 3 different
combinations of input measurements:

• H+W: height and weight only;
• H+W+T: height, weight, and 3 tape measurements: under-chest circumference, waist

circumference, and hip circumference;
• H+W+I: height, weight, and the 5 selected image measurements (see Section 2.2)

which are annotated on frontal view doorway images (in Set 2).

We compared the GP regressor we used against other 4 different regressors: (1) nearest-
neighbor regressor (NN); (2) average of k-nearest neighbor regressor (kNN-average);
(3) linear regressor (LR); and (4) weighted-kernel average regressor (WKA): a non-
parametric regressor based on the normalised Parzen window. It estimates the body morph

parameter ŷ based on all the nearby training data as ŷ = ∑N
i=1 Φ(ẑ,zi)yi

∑N
i=1 Φ(ẑ,zi)

,where the radial basis

function (RBF) kernel function Φ(ẑ,zi) =
exp

(
−‖ẑ−zi‖2/2σ2

)
∑N

j=1 exp
(
−‖zj−zi‖2/2σ2

) (i = 1,2, · · · ,N) is used and

σ is the radius of the smoothing kernel. In the experiments, the kernel widths are adjusted
to σ = 0.015 in WKA such that the regressor can provide a near-optimal performance.

Fig. 4(left) shows the performances of different regressors on all 4 different combina-
tions of measurement inputs. Here, average absolute error (AAE) on the whole dataset is
used as the criterion for all comparisons. Concerning the performance of each individual
regressor, the results show that GP constantly performs equally or better than the other 4
regressors in all 3 settings. Concerning the effectiveness of input measurement combina-
tions, we observe that predictive accuracy of each regressor are considerably improved in
the settings H+W+T and H+W+I compared with the baseline setting H+W. As expected,
the results for the H+W+I setting lies between those for the H+W setting and the H+W+T
setting whichever regressor is used. It shows that tape measurements are more effective to
define a body shape than the corresponding image measurements. The major cause could
be that image measurements suffer from annotation errors and the loss of depth information.
However, image measurements do provide enough extra information to constrain the body
shape and they can be used as a compromise when tape measurements are unavailable.

To further evaluate the performance of the H+W+I setting, we compute the prediction
errors of 4 specific measurements: chest, waist, hips, and inner leg length, which define the
dimensions of specific body parts and are crucial for garment design. We compare the results
with those from the H+W input setting, as shown in Fig. 4(center). By introducing image
measurements, the average prediction errors on actual tape measurements are reduced by
15− 45% from the results based on height and weight only. Among all 4 measurements,
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Figure 5: Simulating aspect ratio correction on distorted Set 2 images. (left/center): Average
remaining aspect ratio αp and deviation ∆αp after correction are provided; (right): Average
absolute prediction errors under different aspect ratios α .

the prediction on waist circumference is less accurate compared with the others, due to its
ambiguous definition in the CAESAR dataset.
Tests on Unrectified Images and Aspect Ratio Correction: To evaluate the efficacy of
the aspect ratio correction (ARC) scheme we proposed in Section 3, we synthetically stretch
each perfectly frontal view testing image (in Set 2) into different aspect ratios α , ranging
from 0.9 to 1.1, and try correcting them with our algorithm. Two error measurements are
used: (1) remaining aspect ratio αp after correction; (2) aspect ratio deviation ∆αp after
correction, which is defined as ∆αp = |αp−1|. We compute the average αp and ∆αp over all
the images in Set 2, and summarise the results in Fig. 5(left/center). It can be observed that
our algorithm neutralises about 60% of the aspect ratio distortion in the input on average. We
also perform body measurements prediction on the images with different distortion levels,
and plot the prediction errors against α in Fig. 5(right), which shows that the ARC scheme
can considerably improve the accuracy when a large aspect ratio distortion is present.

We then test the performance of the system on unrectified doorway images (in Set 3) by
going through the complete procedures of image rectification and morphing parameter pre-
diction, and checking the prediction accuracy of the same 15 mesh measurements. Contrast
experiments have been conducted by performing shape parameter prediction from image
measurements either with or without ARC, as shown in Fig. 4(right). For the purpose of
comparison, we also provide results on corresponding ideal frontal view images (Set 2) as
the baselines. These results indicate that using the ARC scheme can considerably increase
the system robustness against the aspect ratio distortion during the rectification stage.
Tests on Photos from Real Users: We finally evaluate the usability and accuracy of the
proposed system on photos of real users. Volunteers were invited to test our virtual fitting-
room software online and then fill in questionnaires afterwards. They were asked to take
photos at home in an uncontrolled environment, and then use our system to extract image
measurements and create their own body shape models. Fig. 6 gives some qualitative results
for different body shapes, showing that our system can provide meaningful body shape pre-
dictions based on the given input information, although detailed shapes around waist areas
may sometimes be less accurate (e.g. instance 2 in Fig. 6). For a quantitative evaluation, we
also collect 4 frequently used tape measurements: chest, waist, hips, and inner leg length,
from these volunteers, and compare them with the corresponding measurements taken from
the predicted body shapes. The statistics given in Table 1 show the usability of our system.

Concerning efficiency, feedback shows that most users take about 1.5 - 3 minutes to
finish marking the doorway and 5 image measurements (see Section 2.2) on the photo using
our current interface. This includes the time for the automatic image rectification. Then, it
takes less than one second for a PC with a 2.4GHz CPU to correct the aspect ratio, estimate
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(a) (b) (c)(a) (b) (a) (b) (c)(c)
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61k g

170cm
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169cm
70k g

Figure 6: Qualitative results generated by real users: (a) uploaded photos; (b) rectified im-
ages; (c) 3D body shapes predicted by our system (in three different views).

Body part Chest Waist Hips Inner leg length
Error(cm) 1.52 ± 1.36 1.88 ± 1.06 3.10 ± 1.86 0.79 ± 0.90

Table 1: Prediction errors on real user images in Fig. 6.

the morphing parameters, and generate the 3D body shape from input measurements.

5 Conclusion
In this paper, we present a novel system for reconstructing reliable 3D human body shapes
from anthropometric measurements, and introduce an interface for user to conveniently ex-
tract these measurements on doorway photos. Qualitative and quantitative experiments have
supported the efficacy and usability of our shape-from-measurements system. Our ongoing
and future work includes: (1) building up a public database for shape-from-measurement re-
search, which includes anthropometric measurements, 3D body scans, as well as doorways
images from volunteers; (2) carrying out a more thorough user study; and (3) extending the
algorithms and converting them into a commercial online fitting-room system.
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