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Recently, there has been increased interest in combining object class de-
tection (“things”) and texture segmentation (“stuff”’) for scene understand-
ing. There is mutual benefit from such a combination. Object detectors
can be improved by context (“from stuff”’). In return, segmentation can
be improved by semantic information provided by the object detector.
Ladicky et al. [5] propose to obtain the support region for a detected ob-
ject by applying GrabCut [7] on the detector bounding box. This GrabCut
segmentation introduces an additional, separate CRF segmentation step
prior to the final image-level CRF segmentation, even though both deci-
sions are based on the same color potentials. We argue that there should
be only one segmentation decision made as a result of the joint infer-
ence. Furthermore, the GrabCut segmentation step ignores any specific
information about the detected object class. In particular, it does not take
into account how important a certain pixel was for the initial detection
decision. We propose to bring in this information by feeding back soft,
class-specific top-down segmentation information from the object detec-
tor for optimization in a single CRF. In this paper, this is done in the form
of integrating class-specific information in the form of generalized robust
higher order potentials [4]. These potentials make it possible to specify a
per-pixel weight which expresses how important a pixel is for preserving
object consistency.

The formulation of the energy function E(y) in a higher order CRF,
consisting of unary (y;), pairwise (;;), and robust PN (y,) potentials
takes the following form
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which has shown state-of-the art performance in the multi-class image
labeling problem [4]. While the unary and pairwise potentials are de-
fined on the pixel level, the robust PV potentials are defined over a set
of segments .. In [4], those segments are created by an unsupervised
multi-level mean-shift segmentation [2]. The PV potentials introduce a
cost for assigning different label classes to pixels that are part of the same
segment, while taking into account the quality of the entire segment. Gen-
eralized robust PN potentials provide a structured framework for incorpo-
rating the class-specific information provided by an object detector. As
introduced in [4], the per-pixel weights provide a nice interface to natu-
rally introduce a per-pixel factor which expresses the importance of each
object pixel in the preservation of object consistency.

Top-down segmentations provide output from an object detector in
the form of soft decisions on whether an image pixel belongs to a specific
object or not. They are obtained from an extended version of the Hough
Forest detector [3]. The idea behind Hough Forests is to store for each
leaf node the spatial occurrence distribution (relative to the object center)
of all patches that were assigned to this node. During testing, those stored
locations are then used to cast probabilistic votes for the object center in
a Generalized Hough Transform. As shown in [6], the votes correspond-
ing to a local maximum in the Hough space can then be backprojected
to the image in order to propagate top-down information to the patches
they were originating from. We extend the Hough Forest classifier with
this top-down segmentation formalism, using figure-ground labels learned
from annotated training examples. Each vote v; contributing to a Hough
space maximum / is backprojected to its originating patch P, augmented
with a local figure-ground label Seg(v;). We can then obtain the figure
and ground probabilities for each pixel p by averaging over all patches
P; containing this pixel and summing the backprojected figure-ground la-

Figure 1: Top-down segmentations improve multi-class image label-
ing. (a) Test image with object detections. (b) Ground truth labeled im-
age. Our algorithm uses top-down segmentations (c) to produce segmen-
tation results (d). (Best viewed in color)
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These soft decisions can also be interpreted as weights indicating the im-
portance of each pixel in the preservation of the object’s label consistency.
It is, therefore, intuitive to propose the use of the foreground probability
Pfig of each pixel as a weight wf.‘ in the generalized robust PV potentials.

We experimentally evaluate our approach on the CamVid dataset [1].
As our results indicate, we outperform the state-of-the-art systems for
the classes that object detections are available and provide similar perfor-
mance for the rest of the classes using a simpler CRF structure.
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